首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many components of host–parasite interactions have been shown to affect the way virulence (i.e. parasite‐induced harm to the host) evolves. However, coevolution of multiple parasite traits is often neglected. We explore how an immunosuppressive adaptation of parasites affects and coevolves with virulence in multiple infections. Applying the adaptive dynamics framework to epidemiological models with coinfection, we show that immunosuppression is a double‐edged sword for the evolution of virulence. On one hand, it amplifies the adaptive benefit of virulence by increasing the abundance of coinfections through epidemiological feedbacks. On the other hand, immunosuppression hinders host recovery, prolonging the duration of infection and elevating the cost of killing the host (as more opportunities for transmission will be forgone if the host dies). The balance between the cost and benefit of immunosuppression varies across different background mortality rates of hosts. In addition, we find that immunosuppression evolution is influenced considerably by the precise trade‐off shape determining the effect of immunosuppression on host recovery and susceptibility to further infection. These results demonstrate that the evolution of virulence is shaped by immunosuppression while highlighting that the evolution of immune evasion mechanisms deserves further research attention.  相似文献   

2.
The trypanosome Lotmaria passim and the microsporidian Nosema ceranae are common parasites of the honey bee, Apis mellifera, intestine, but the nature of interactions between them is unknown. Here, we took advantage of naturally occurring infections and quantified infection loads of individual workers (N = 408) originating from three apiaries (four colonies per apiary) using PCR to test for interactions between these two parasites. For that purpose, we measured the frequency of single and double infections, estimated the parasite loads of single and double infections, and determined the type of correlation between both parasites in double infections. If interactions between both parasites are strong and antagonistic, single infections should be more frequent than double infections, double infections will have lower parasite loads than single infections, and double infections will present a negative correlation. Overall, a total of 88 workers were infected with N. ceranae, 53 with L. passim, and eight with both parasites. Although both parasites were found in all three apiaries, there were significant differences among apiaries in the proportions of infected bees. The data show no significant differences between the expected and observed frequencies of single‐ and double‐infected bees. While the infection loads of individual bees were significantly higher for L. passim compared to N. ceranae, there were no significant differences in infection loads between single‐ and double‐infected hosts for both parasites. These results suggest no strong interactions between the two parasites in honey bees, possibly due to spatial separation in the host. The significant positive correlation between L. passim and N. ceranae infection loads in double‐infected hosts therefore most likely results from differences among individual hosts rather than cooperation between parasites. Even if hosts are infected by multiple parasites, this does not necessarily imply that there are any significant interactions between them.  相似文献   

3.
Antagonistic coevolution between hosts and parasites is known to affect selection on recombination in hosts. The Red Queen Hypothesis (RQH) posits that genetic shuffling is beneficial for hosts because it quickly creates resistant genotypes. Indeed, a large body of theoretical studies have shown that for many models of the genetic interaction between host and parasite, the coevolutionary dynamics of hosts and parasites generate selection for recombination or sexual reproduction. Here we investigate models in which the effect of the host on the parasite (and vice versa) depend approximately multiplicatively on the number of matched alleles. Contrary to expectation, these models generate a dynamical behavior that strongly selects against recombination/sex. We investigate this atypical behavior analytically and numerically. Specifically we show that two complementary equilibria are responsible for generating strong linkage disequilibria of opposite sign, which in turn causes strong selection against sex. The biological relevance of this finding stems from the fact that these phenomena can also be observed if hosts are attacked by two parasites that affect host fitness independently. Hence the role of the Red Queen Hypothesis in natural host parasite systems where infection by multiple parasites is the rule rather than the exception needs to be reevaluated.  相似文献   

4.
The coinfection of a host by several parasite strains is known to affect selective pressures on parasite strategies of host exploitation. I present a general model of coinfections that ties together kin selection models of virulence evolution and epidemiological models of multiple infections. I derive an analytical expression for the invasion fitness of a rare mutant in a population with an arbitrary distribution of the multiplicity of infection (MOI) across hosts. When a single mutation affects parasite strategies in all MOI classes, I show that the evolutionarily stable level of virulence depends on a demographic average of within‐host relatedness across all host classes. This generalization of previous kin selection results requires that within‐host parasite densities do not vary between hosts. When host exploitation strategies are allowed to vary across classes, I show that the strategy of host exploitation in a focal MOI class depends on the relative magnitudes of parasite reproductive values in the focal class and in the next. Thus, in contrast to previous findings, lower within‐host relatedness in competitive parasite interactions can potentially correspond to either higher or lower levels of virulence.  相似文献   

5.
Hosts are typically challenged by multiple parasites, but to date theory on the evolution of resistance has mainly focused on single infections. We develop a series of models that examine the impact of multiple parasites on the evolution of resistance under the assumption that parasites coexist at the host population scale as a consequence of superinfection. In this way, we are able to explicitly examine the impact of ecological dynamics on the evolutionary outcome. We use our models to address a key question of how host lifespan affects investment in resistance to multiple parasites. We show that investment in costly resistance depends on the specificity of the immune response and on whether or not the focal parasite leads to more acute infection than the co‐circulating parasite. A key finding is that investment in resistance always increases as the immune response becomes more general independently of whether it is the focal or the co‐circulating parasite that exploits the host most aggressively. Long‐lived hosts always invest more than short‐lived hosts in both general resistance and resistance that is specific to relatively acute focal parasites. However, for specific resistance to parasites that are less acute than co‐circulating parasites it is the short‐lived hosts that are predicted to invest most. We show that these results apply whatever the mode of defence, that is whether it is through avoidance or through increased recovery, with or without acquired immunity, or through acquired immunity itself. As a whole, our results emphasize the importance of considering multiple parasites in determining optimal immune investment in eco‐evolutionary systems.  相似文献   

6.
Organisms are frequently coinfected by multiple parasite strains and species, and interactions between parasites within hosts are known to influence parasite prevalence and diversity, as well as epidemic timing. Importantly, interactions between coinfecting parasites can be affected by the order in which they infect hosts (i.e. within‐host priority effects). In this study, we use a single‐host, two‐pathogen, SI model with environmental transmission to explore how within‐host priority effects scale up to alter host population‐scale infection patterns. Specifically, we ask how parasite prevalence changes in the presence of different types of priority effects. We consider two scenarios without priority effects and four scenarios with priority effects where there is either an advantage or a disadvantage to being the first to infect in a coinfected host. Models without priority effects always predict negative relationships between the prevalences of both parasites. In contrast, models with priority effects can yield unimodal prevalence relationships where the prevalence of a focal parasite is minimized or maximized at intermediate prevalences of a coinfecting parasite. The mechanism behind this pattern is that as the prevalence of the coinfecting parasite increases, most infections of the focal parasite change from occurring as solo infections, to first arrival coinfections, to second arrival coinfections. The corresponding changes in parasite fitness as the focal parasite moves from one infection class to another then map to changes in focal parasite prevalence. Further, we found that even when parasites interact negatively within a host, they still can have positive prevalence relationships at the population scale. These results suggest that within‐host priority effects can change host population‐scale infection patterns in systematic (and initially counterintuitive) ways, and that taking them into account may improve disease forecasting in coinfected populations.  相似文献   

7.
Theoretical models predict that parasite relatedness affects the outcome of competition between parasites, and the evolution of parasite virulence. We examined whether parasite relatedness affects competition between parasitic plants (Cuscuta europaea) that share common host plants (Urtica dioica). We infected hosts with two parasitic plants that were either half-siblings or nonrelated. Relative size asymmetry between the competing parasites was significantly higher in the nonrelated infections compared to infections with siblings. This higher asymmetry was caused by the fact that the performance of some parasite genotypes decreased and that of others increased when grown in multiple infections with nonrelated parasites. This result agrees with the predictions of theories on the evolution of parasite virulence: to enhance parasite transmission, selection may favour reduced competition with genetically related parasites in hosts infected by several genotypes. However, in contrast to the most common predictions, nonrelated infections were not more virulent than the sibling infections.  相似文献   

8.
In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less‐virulent parasite may protect the host against the more‐virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood‐infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less‐virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa.  相似文献   

9.
The adaptive significance of sexual reproduction remains as an unsolved problem in evolutionary biology. One promising hypothesis is that frequency‐dependent selection by parasites selects for sexual reproduction in hosts, but it is unclear whether such selection on hosts would feed back to select for sexual reproduction in parasites. Here we used individual‐based computer simulations to explore this possibility. Specifically, we tracked the dynamics of asexual parasites following their introduction into sexual parasite populations for different combinations of parasite virulence and transmission. Our results suggest that coevolutionary interactions with hosts would generally lead to a stable coexistence between sexual parasites and a single parasite clone. However, if multiple mutations to asexual reproduction were allowed, we found that the interaction led to the accumulation of clonal diversity in the asexual parasite population, which led to the eventual extinction of the sexual parasites. Thus, coevolution with sexual hosts may not be generally sufficient to select for sex in parasites. We then allowed for the stochastic accumulation of mutations in the finite parasite populations (Muller's Ratchet). We found that, for higher levels of parasite virulence and transmission, the population bottlenecks resulting from host–parasite coevolution led to the rapid accumulation of mutations in the clonal parasites and their elimination from the population. This result may explain the observation that sexual reproduction is more common in parasitic animals than in their free‐living relatives.  相似文献   

10.
Vertebrate hosts differ in their level of parasite susceptibility and infestation. In avian broods, variation in susceptibility of nestlings to ectoparasites may be associated with non‐uniform distributions of parasites among brood mates, with parasites concentrating feeding on the most vulnerable hosts. The presence of a highly susceptible nestling in a brood can benefit the remaining young by reducing the parasite pressure they experience; however, from a parasite’s perspective, broods with fewer susceptible hosts may provide effectively fewer resources than broods of the same size containing a greater abundance of susceptible hosts, and this could limit the number of parasites that a host brood can sustain. To test whether variation in number of susceptible hosts affects the number of parasites in bird nests, we first examined the role of host sex and induced immunity (via methionine supplementation) on susceptibility of mountain bluebirds Sialia currucoides to parasitism by blow flies Protocalliphora spp. We then assessed the effect of variation in number of susceptible hosts on the number of parasites inhabiting the nest. Only females showed a benefit of methionine supplementation, gaining mass more rapidly following supplementation compared to males. This suggests that females are more susceptible to parasites in this system; this was further supported by parasite feeding trials, in which parasites extracted larger blood meals from female than male hosts. Finally, the abundance of parasites in nests was predicted by brood sex ratio: broods containing more female young harboured more parasites. Hence, within‐brood variation in host susceptibility to parasites can not only influence the costs of parasitism for individual nestlings, but may also have consequences for the size of parasite populations within nests. If patterns of maternal investment affect the abundance of nest‐dwelling parasites, these interactions may be important for understanding fitness consequences of maternal resource allocation in many vertebrate hosts.  相似文献   

11.
Abstract Why do parasites harm their hosts? The general understanding is that if the transmission rate and virulence of a parasite are linked, then the parasite must harm its host to maximize its transmission. The exact nature of such trade‐offs remains largely unclear, but for vertebrate hosts it probably involves interactions between a microparasite and the host immune system. Previous results have suggested that in a homogeneous host population in the absence of super‐ or coinfection, within‐host dynamics lead to selection of the parasite with an intermediate growth rate that is just being controlled by the immune system before it kills the host (Antia et al. 1994). In this paper, we examine how this result changes when heterogeneity is introduced to the host population. We incorporate the simplest form of heterogeneity–random heterogeneity in the parameters describing the size of the initial parasite inoculum, the immune response of the host, and the lethal density at which the parasite kills the host. We find that the general conclusion of the previous model holds: parasites evolve some intermediate growth rate. However, in contrast with the generally accepted view, we find that virulence (measured by the case mortality or the rate of parasite‐induced host mortality) increases with heterogeneity. Finally, we link the within‐host and between‐host dynamics of parasites. We show how the parameters for epidemiological spread of the disease can be estimated from the within‐host dynamics, and in doing so examine the way in which trade‐offs between these epidemiological parameters arise as a consequence of the interaction of the parasite and the immune response of the host.  相似文献   

12.
Host condition as a constraint for parasite reproduction   总被引:2,自引:0,他引:2  
Environmental stress has been suggested to increase host susceptibility to infections and reduce host ability to resist parasite growth and reproduction, thus benefiting parasites. This prediction stems from expected costs of immune defence; hosts in poor condition should have less resources to be allocated to immune function. However, the alternative hypothesis for response to environmental stress is that hosts in poor condition provide less resources for parasites and/or suffer higher mortality, leading to reduced parasite growth, reproduction and survival. We contrasted these alternative hypotheses in a trematode–snail ( Diplostomum spathaceum – Lymnaea stagnalis ) system by asking: (1) how host condition affects parasite reproduction (amount and quality of produced transmission stages) and (2) how host condition affects the survival of infected host individuals. We experimentally manipulated host condition by starving the snails, and found that parasites produced fewer and poorer quality transmission stages in stressed hosts. Furthermore, starvation increased snail mortality. These findings indicate that in well-established trematode infections, reduced ability of immune allocation has no effect on host exploitation by parasites. Instead, deteriorating resources for the snail host can directly limit the amount of resources available for the parasite. This, together with increased host mortality, may have negative effects on parasite populations in the wild.  相似文献   

13.
Population models of host-parasite interactions predict that when different parasite genotypes compete within a host for limited resources, those that exploit the host faster will be selected, leading to an increase in parasite virulence. When parasites sharing a host are related, however, kin selection should lead to more cooperative host exploitation that may involve slower rates of parasite reproduction. Despite their potential importance, studies that assess the prevalence of multiple genotype infections in natural populations remain rare, and studies quantifying the relatedness of parasites occurring together as natural multiple infections are particularly scarce. We investigated multiple infections in natural populations of the systemic fungal plant parasite Microbotryum violaceum, the anther smut of Caryophyllaceae, on its host, Silene latifolia. We found that multiple infections can be extremely frequent, with different fungal genotypes found in different stems of single plants. Multiple infections involved parasite genotypes more closely related than would be expected based upon their genetic diversity or due to spatial substructuring within the parasite populations. Together with previous sequential inoculation experiments, our results suggest that M. violaceum actively excludes divergent competitors while tolerating closely related genotypes. Such an exclusion mechanism might explain why multiple infections were less frequent in populations with the highest genetic diversity, which is at odds with intuitive expectations. Thus, these results demonstrate that genetic diversity can influence the prevalence of multiple infections in nature, which will have important consequences for their optimal levels of virulence. Measuring the occurrence of multiple infections and the relatedness among parasites within hosts in natural populations may be important for understanding the evolutionary dynamics of disease, the consequences of vaccine use, and forces driving the population genetic structure of parasites.  相似文献   

14.
Understanding the processes that shape the evolution of parasites is a key challenge for evolutionary biology. It is well understood that different parasites may often infect the same host and that this may have important implications to the evolutionary behavior. Here we examine the evolutionary implications of the conflict that arises when two parasite species, one vertically transmitted and the other horizontally transmitted, infect the same host. We show that the presence of a vertically transmitted parasite (VTP) often leads to the evolution of higher virulence in horizontally transmitted parasites (HTPs), particularly if the VTPs are feminizing. The high virulence in some HTPs may therefore result from coinfection with cryptic VTPs. The impact of an HTP on a VTP evolution depends crucially on the nature of the life‐history trade‐offs. Fast virulent HTPs select for intermediate feminization and virulence in VTPs. Coevolutionary models show similar insights, but emphasize the importance of host life span to the outcome, with higher virulence in both types of parasite in short‐lived hosts. Overall, our models emphasize the interplay of host and parasite characteristics in the evolutionary outcome and point the way for further empirical study.  相似文献   

15.
Genetically specific interactions between hosts and parasites can lead to coevolutionary fluctuations in their genotype frequencies over time. Such fluctuating selection dynamics are, however, expected to occur only under specific circumstances (e.g., high fitness costs of infection to the hosts). The outcomes of host–parasite interactions are typically affected by environmental/ecological factors, which could modify coevolutionary dynamics. For instance, individual hosts are often infected with more than one parasite species and interactions between them can alter host and parasite performance. We examined the potential effects of coinfections by genetically specific (i.e., coevolving) and nonspecific (i.e., generalist) parasite species on fluctuating selection dynamics using numerical simulations. We modeled coevolution (a) when hosts are exposed to a single parasite species that must genetically match the host to infect, (b) when hosts are also exposed to a generalist parasite that increases fitness costs to the hosts, and (c) when coinfecting parasites compete for the shared host resources. Our results show that coinfections can enhance fluctuating selection dynamics when they increase fitness costs to the hosts. Under resource competition, coinfections can either enhance or suppress fluctuating selection dynamics, depending on the characteristics (i.e., fecundity, fitness costs induced to the hosts) of the interacting parasites.  相似文献   

16.
Antagonistic coevolution between hosts and parasites can involve rapid fluctuations of genotype frequencies that are known as Red Queen dynamics. Under such dynamics, recombination in the hosts may be advantageous because genetic shuffling can quickly produce disproportionately fit offspring (the Red Queen hypothesis). Previous models investigating these dynamics have assumed rather simple models of genetic interactions between hosts and parasites. Here, we assess the robustness of earlier theoretical predictions about the Red Queen with respect to the underlying host-parasite interactions. To this end, we created large numbers of random interaction matrices, analysed the resulting dynamics through simulation, and ascertained whether recombination was favoured or disfavoured. We observed Red Queen dynamics in many of our simulations provided the interaction matrices exhibited sufficient ‘antagonicity’. In agreement with previous studies, strong selection on either hosts or parasites favours selection for increased recombination. However, fast changes in the sign of linkage disequilibrium or epistasis were only infrequently observed and do not appear to be a necessary condition for the Red Queen hypothesis to work. Indeed, recombination was often favoured even though the linkage disequilibrium remained of constant sign throughout the simulations. We conclude that Red Queen-type dynamics involving persistent fluctuations in host and parasite genotype frequencies appear to not be an artefact of specific assumptions about host-parasite fitness interactions, but emerge readily with the general interactions studied here. Our results also indicate that although recombination is often favoured, some of the factors previously thought to be important in this process such as linkage disequilibrium fluctuations need to be reassessed when fitness interactions between hosts and parasites are complex.  相似文献   

17.
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host–parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.  相似文献   

18.
Understanding traits influencing the distribution of genetic diversity has major ecological and evolutionary implications for host–parasite interactions. The genetic structure of parasites is expected to conform to that of their hosts, because host dispersal is generally assumed to drive parasite dispersal. Here, we used a meta‐analysis to test this paradigm and determine whether traits related to host dispersal correctly predict the spatial co‐distribution of host and parasite genetic variation. We compiled data from empirical work on local adaptation and host–parasite population genetic structure from a wide range of taxonomic groups. We found that genetic differentiation was significantly lower in parasites than in hosts, suggesting that dispersal may often be higher for parasites. A significant correlation in the pairwise genetic differentiation of hosts and parasites was evident, but surprisingly weak. These results were largely explained by parasite reproductive mode, the proportion of free‐living stages in the parasite life cycle and the geographical extent of the study; variables related to host dispersal were poor predictors of genetic patterns. Our results do not dispel the paradigm that parasite population genetic structure depends on host dispersal. Rather, we highlight that alternative factors are also important in driving the co‐distribution of host and parasite genetic variation.  相似文献   

19.
Host–parasite co‐evolution can lead to genetic differentiation among isolated host–parasite populations and local adaptation between parasites and their hosts. However, tests of local adaptation rarely consider multiple fitness‐related traits although focus on a single component of fitness can be misleading. Here, we concomitantly examined genetic structure and co‐divergence patterns of the trematode Coitocaecum parvum and its crustacean host Paracalliope fluviatilis among isolated populations using the mitochondrial cytochrome oxidase I gene (COI). We then performed experimental cross‐infections between two genetically divergent host–parasite populations. Both hosts and parasites displayed genetic differentiation among populations, although genetic structure was less pronounced in the parasite. Data also supported a co‐divergence scenario between C. parvum and P. fluviatilis potentially related to local co‐adaptation. Results from cross‐infections indicated that some parasite lineages seemed to be locally adapted to their sympatric (home) hosts in which they achieved higher infection and survival rates than in allopatric (away) amphipods. However, local, intrinsic host and parasite characteristics (host behavioural or immunological resistance to infections, parasite infectivity or growth rate) also influenced patterns of host–parasite interactions. For example, overall host vulnerability to C. parvum varied between populations, regardless of parasite origin (local vs. foreign), potentially swamping apparent local co‐adaptation effects. Furthermore, local adaptation effects seemed trait specific; different components of parasite fitness (infection and survival rates, growth) responded differently to cross‐infections. Overall, data show that genetic differentiation is not inevitably coupled with local adaptation, and that the latter must be interpreted with caution in a multi‐trait context.  相似文献   

20.
For over 25 years, many evolutionary ecologists have believed that sexual reproduction occurs because it allows hosts to change genotypes each generation and thereby evade their coevolving parasites. However, recent influential theoretical analyses suggest that, though parasites can select for sex under some conditions, they often select against it. These models assume that encounters between hosts and parasites are completely random. Because of this assumption, the fitness of a host depends only on its own genotype (“genotypic selection”). If a host is even slightly more likely to encounter a parasite transmitted by its mother than expected by random chance, then the fitness of a host also depends on its genetic similarity to its mother (“similarity selection”). A population genetic model is presented here that includes both genotypic and similarity selection, allowing them to be directly compared in the same framework. It is shown that similarity selection is a much more potent force with respect to the evolution of sex than is genotypic selection. Consequently, similarity selection can drive the evolution of sex even if it is much weaker than genotypic selection with respect to fitness. Examination of explicit coevolutionary models reveals that even a small degree of mother–offspring parasite transmission can cause parasites to favor sex rather than oppose it. In contrast to previous predictions, the model shows that weakly virulent parasites are more likely to favor sex than are highly virulent ones. Parasites have figured prominently in discussions of the evolution of sex, but recent models suggest that parasites often select against sex rather than for it. With the inclusion of small and realistic exposure biases, parasites are much more likely to favor sex. Though parasites alone may not provide a complete explanation for sex, the results presented here expand the potential for parasites to contribute to the maintenance of sex rather than act against it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号