共查询到20条相似文献,搜索用时 15 毫秒
1.
We sequenced the small subunit rDNA and internal transcribed spacer region of Gracilariaceae from the tropical Atlantic and Pacific, with emphasis on flattened or compressed species. Sequence comparisons confirmed three main lineages of Gracilariaceae: Curdiea/Melanthalia, Gracilariopsis/Gracilariophila, and Gracilaria. The Curdiea/Melanthalia diverged early in the family. Gracilariopsis was paraphyletic, because at least one Gracilariophila species evolved from it. The Atlantic Gracilariopsis were monophyletic and separated from the Pacific lineages. The Gracilaria included all species referable to its own species and to Hydropuntia, which was paraphyletic, formed by distantly related lineages. The new combination Gracilaria pauciramosa (N. Rodríguez Ríos) Bellorin, M. C. Oliveira et E. C. Oliveira is proposed for Polycavernosa pauciramosa N. Rodríguez Ríos. Recognition of subgenera within Gracilaria, based on spermatangial arrangement, was not supported. Instead, infrageneric groups were delineated by geographic origins and combinations of reproductive characters. Most Pacific species with either “textorii” or “verrucosa” type spermatangia were deeply separated from Atlantic species. Within the Atlantic Gracilaria, a lineage encompassing mostly tropical cylindrical species with “henriquesiana” type spermatangia and distinctive cystocarp anatomy was recognized. A lineage was also retrieved for cold water stringy species with verrucosa type spermatangia. Several species from the western Atlantic are closely related to Gracilaria tikvahiae McLachlan with nearly identical morphology. On the other hand, most flattened species from the tropical Atlantic were closely related despite their diverse morphologies. The interpretation of our data in addition to the literature indicates that more populations from the Indo‐Pacific must be studied before a general picture of Gracilariaceae evolution can be framed. 相似文献
2.
Florian Weinberger Patricia Leonardi Alicia Miravalles Juan A. Correa Ulrich Lion Bernard Kloareg Philippe Potin 《Journal of phycology》2005,41(4):863-873
The two agar‐producing red algae, Gracilaria chilensis C. J. Bird, McLachlan & E. C. Oliveira and Gracilaria conferta (Schousboe ex Montagne) Montagne, responded with hydrogen peroxide (H2O2) release when agar oligosaccharides were added to the medium. In G. conferta, a transient release was observed, followed by a refractory state of 6 h. This response was sensitive to chemical inhibitors of NADPH oxidase, protein kinases, protein phosphatases, and calcium translocation in the cell, whereas it was insensitive to inhibitors of metalloenzymes. Transmission electron microscopic observations of the H2O2‐dependent formation of cerium peroxide from cerium chloride indicated oxygen activation at the plasma membrane of G. conferta. A putative system, consisting of a receptor specific to agar oligosaccharides and a plasma membrane‐located NADPH oxidase, appears to be responsible for the release of H2O2 in G. conferta. Subcellular examination of G. chilensis showed that the H2O2 release was located in the cell wall. It was sensitive to inhibitors of metalloenzymes and flavoenzymes, and no refractory state was observed. The release was correlated with accumulation of an aldehyde in the algal medium, suggesting that an agar oligosaccharide oxidase is present in the apoplast of G. chilensis. The presence of this enzyme could also be demonstrated by polyacrylamide electrophoresis under nondenaturating conditions and proven to be variable. Cultivation of G. chilensis at 16 to 17°C resulted in significantly stronger expression of agar oligosaccharide oxidase than cultivation at 12°C, which indicates that the enzyme is used under conditions that generally favor microbial agar macerating activity. 相似文献
3.
Generic concepts in the economically important agarophyte red algal family Gracilariaceae were evaluated based on maximum parsimony, Bayesian likelihood, and minimum evolution analyses of the chloroplast‐encoded rbc L gene from 67 specimens worldwide. The results confirm the monophyly of the family and identify three large clades, one of which corresponds to the ancestral antiboreal genera Curdiea and Melanthalia, one to Gracilariopsis, and one to Gracilaria sensu lato, which contains nine distinct independent evolutionary lineages, including Hydropuntia. The species currently attributed to Hydropuntia comprise a single well‐supported clade composed of two distinct lineages. The two most basal clades within Gracilaria sensu lato deserve generic rank: a new genus centered around G. chilensis Bird, McLachlan et Oliveira and G. aff. tenuistipitata Chang et Xia and a resurrected Hydropuntia encompassing primarily Indo‐Pacific (G. urvillei [Montagne] Abbott, G. edulis [S. Gmelin] P. Silva, G. eucheumatoides Harvey, G. preissiana [Sonder] Womersley, and G. rangiferina [Kützing] Piccone) and western Atlantic species (G. cornea J. Agardh, G. crassissima P. et H. Crouan in Mazé et Schramm, G. usneoides [C. Agardh] J. Agardh, G. caudata J. Agardh, and G. secunda P. et H. Crouan in Mazé et Schramm). Cystocarpic features within the Gracilaria sensu lato clades appear to be more phylogenetically informative than male characters. The textorii‐type spermatangial configuration is represented in two distinct clusters of Gracilaria. The rbc L genetic divergence among the Gracilariaceae genera ranged between 8.46% and 16.41%, providing at least 2.5 times more genetic variation than does the 18S nuclear rDNA. rbc L also resolves intrageneric relationships, especially within Gracilaria sensu lato. The current number of gracilariacean species is underestimated in the western Atlantic because of convergence in habit and apparent homoplasy in vegetative and reproductive anatomy. 相似文献
4.
Alexis M. Bellorin Amelia Buriyo Jelveh Sohrabipour Mariana C. Oliveira Eurico C. Oliveira 《Journal of phycology》2008,44(4):1022-1032
Two new species of Gracilariopsis from the Indian Ocean are proposed—Gracilariopsis (Gp.) mclachlanii Buriyo, Bellorin et M. C. Oliveira sp. nov. from Tanzania and Gracilariopsis persica Bellorin, Sohrabipour et E. C. Oliveira sp. nov. from Iran—based on morphology and DNA sequence data (rbcL gene and SSU rDNA). Both species fit the typical features of Gracilariopsis: axes cylindrical throughout, freely and loosely ramified up to four orders, with an abrupt transition in cell size from medulla to cortex, cystocarps lacking tubular nutritive cells and superficial spermatangia. Nucleotide sequence comparisons of rbcL and SSU rDNA placed both species into the Gracilariopsis clade as distinct species from all the accepted species for this genus, forming a deeply divergent lineage together with some species from the Pacific. The new species are very difficult to distinguish on morphological grounds from other species of Gracilariopsis, stressing the importance of homologous molecular marker comparisons for the species recognition in this character‐poor genus. 相似文献
5.
Cliff Ross Frithjof C. Küpper Valerie Vreeland J. Herbert Waite Robert S. Jacobs 《Journal of phycology》2005,41(3):531-541
We investigated the kinetics and composition of the second phase of the wound repair process of Dasycladus vermicularis ([Scropoli] Krasser) using fluorescent probes, chromatography, UV spectroscopy, and histochemistry. Our new evidence supports the hypothesis that the second phase of wound repair (initiated at approximately 35–45 min postinjury) is based on the activation of an oxidative burst that produces micromolar H2O2 levels. These results provide evidence of peroxidase activity at the wound site, real‐time measurements of an oxidative burst, and catechol localization in wound plugs. Strong evidence is presented indicating that the biochemical machinery exists for oxidative cross‐linking to ensue in the wound‐healing process of D. vermicularis. 相似文献
6.
Carlos Frederico Deluqui Gurgel Suzanne Fredericq James N. Norris 《Journal of phycology》2004,40(4):748-758
Gracilaria tikvahiae, a highly morphologically variable red alga, is one of the most common species of Gracilariaceae inhabiting Atlantic estuarine environments and the Intracoastal Waterway of eastern North America. Populations of G. tikvahiae at the extremes of their geographic range (Canada and southern Mexico) are subjected to very different environmental regimes. In this study, we used two types of genetic markers, the chloroplast‐encoded rbcL and the nuclear internal transcribed spacer (ITS) region, to examine the genetic variability within G. tikvahiae, for inferring the taxonomic and phylogenetic relationships between geographically isolated populations, and to discuss its distributional information in a phylogeographic framework. Based on rbcL and ITS phylogenies, specimens from populations collected at the extreme distributional ranges reported for G. tikvahiae are indeed part of the same species; however, rbcL‐ but not ITS‐based phylogenies detected phylogenetic structure among the ten G. tikvahiae different haplotypes found in this study. The four distinct rbcL lineages were identified as 1) a Canadian–northeast U.S. lineage, 2) a southeast Florida lineage, 3) an eastern Gulf of Mexico lineage, and 4) a western Gulf of Mexico lineage. We found no evidence for the occurrence of G. tikvahiae in the Caribbean Sea. Observed phylogeographic patterns match patterns of genetic structures reported for marine animal taxa with continuous and quasicontinuous geographic distribution along the same geographic ranges. 相似文献
7.
8.
Rmi Wattier John F. Dallas Christophe Destombe Pierre Saumitou-Laprade Myriam Valero 《Journal of phycology》1997,33(5):868-880
Four single locus microsatellites identified in the red alga Gracilaria gracilis (Stackhouse) Steentoft, Irvine, et Farnham (Rhodophyta) were examined for allelic diversity at different spatial and taxonomic levels. First, because simple morphological diagnostic characters are often missing within the Gracilariaceae, we developed a simple and rapid method based on rDNA ITS size variation in order to verify the taxonomic status of the samples used in this study. All European (including Mediterranean samples), Argentinian, and Namibian samples used in our study were confirmed to be a homogenous G. gracilis group. By contrast, our results on rDNA ITS sizes showed that Gracilaria from Japan, initially identified as G. gracilis, was different from the rest of the G. gracilis group. Secondly, microsatellite polymorphism and conservation at the species level was tested on the worldwide collection of G. gracilis and within a single population. The loci Gv1AAG and Gv1AAC showed no allelic variation, whereas two others, Gv1CT and Gv2CT, were highly polymorphic. All microsatellite loci were conserved within G. gracilis, except in the sample from Japan. The taxonomic status of G. gracilis from Japan is thus questionable. This study revealed a high level of within-population polymorphism (52 alleles for Gv1CT and 12 for Gv2CT). Moreover, the combination of these two loci was shown to be very powerful for identifying individuals within a population, that is, 93% of the individuals were characterized by a unique genotype. Finally, conservation of the four loci was tested in taxonomically related species of Gracilaria (G. chilensis, G. pacifica, and G. tikvahiae) and two Gracilariopsis species (Gs. sp. and Gs. longissima). The results suggest that the polymorphic locus Gv2CT may provide a valuable genetic marker within the different species of the Gracilariaceae. 相似文献
9.
The biochemical characteristics and diurnal changes in activity of the enzyme nitrate reductase (NR; EC 1.6.6.1) from the marine red alga Gracilaria tenuistipitata var. liui Zhang et Xia are described. Different assay conditions were tested to determine the stability of NR. The crude extract of G. tenuistipitata has a NR specific activity of 10.2 U.mg−1, which is higher than the NR activities found for other algae, plants, and fungi. This NR is highly active at a slightly alkaline pH and is stable over a wide range of temperature, with an optimal activity at 20° C. The apical portions of the thallus contain 64.9 ± 6.6% of the total NR specific activity. The apparent Michaelis-Menten (Km) constant found for KNO3 was 197 μM, and it was 95 μM for NADH. The NR from G. tenuistipitata can be included in the NADH-specific group, because no activity was found when NADPH was used as an electron donor. In extracts of algae grown under either continuously dim light or a light-dark cycle, the activity of NR exhibits a daily rhythm, peaking at the middle of the light phase, when activity is 30-fold higher than during the night phase. 相似文献
10.
11.
Adriano Sfriso Silvia Maistro Carlo Andreoli Isabella Moro 《Journal of phycology》2010,46(5):1024-1027
Molecular outcomes led us to report the first occurrence of the invasive alien species Gracilaria vermiculophylla (Ohmi) Papenf. in the Mediterranean Sea. This species was recorded for the first time in the Po Delta lagoons in May and October 2008, probably introduced by the importation of the Manila clam Tapes philippinarum. At present, G. vermiculophylla is spread only near some clam‐farming areas, but its diffusion is expected to increase with the colonization of other lagoons where aquaculture is spread, as already observed for other alien species such as Agardhiella subulata and Solieria filiformis. The present study supplies further information on the morphology of this species, the ecological characteristics of the colonized areas, and the most probable introduction vector, confirming that the species spreading occurs in eutrophic and turbid coastal systems. 相似文献
12.
Sandra C. Lindstrom Juliet Brodie Michael D. J. Lynch Mi Sook Hwang Han‐Gu Choi Masahiko Miyata Norio Kikuchi Mariana C. Oliveira Tracy Farr Chris Neefus Agnes Mols‐Mortensen Daniela Milstein Kirsten M. Müller 《Journal of phycology》2011,47(5):1131-1151
The red algal order Bangiales has been revised as a result of detailed regional studies and the development of expert local knowledge of Bangiales floras, followed by collaborative global analyses based on wide taxon sampling and molecular analyses. Combined analyses of the nuclear SSU rRNA gene and the plastid RUBISCO LSU (rbcL) gene for 157 Bangiales taxa have been conducted. Fifteen genera of Bangiales, seven filamentous and eight foliose, are recognized. This classification includes five newly described and two resurrected genera. This revision constitutes a major change in understanding relationships and evolution in this order. The genus Porphyra is now restricted to five described species and a number of undescribed species. Other foliose taxa previously placed in Porphyra are now recognized to belong to the genera Boreophyllum gen. nov., Clymene gen. nov., Fuscifolium gen. nov., Lysithea gen. nov., Miuraea gen. nov., Pyropia, and Wildemania. Four of the seven filamentous genera recognized in our analyses already have generic names (Bangia, Dione, Minerva, and Pseudobangia), and are all currently monotypic. The unnamed filamentous genera are clearly composed of multiple species, and few of these species have names. Further research is required: the genus to which the marine taxon Bangia fuscopurpurea belongs is not known, and there are also a large number of species previously described as Porphyra for which nuclear SSU ribosomal RNA (nrSSU) or rbcL sequence data should be obtained so that they can be assigned to the appropriate genus. 相似文献
13.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis. 相似文献
14.
15.
16.
A variety of fluorescein isothiocyanate-labeled lectins specific for different sugar moieties were examined as probes for the wound-healing response in the filamentous red alga Antithamnion sparsum Tokida. Among them, only concanavalin A (ConA) and Lens culrinaris agglutinin (LCA), which have specificity to α-D-mannosyl residues, bound specifically to repair cells during the wound-healing process. When ConA or LCA was added at various time intervals after wounding, it first bound (3 h post-wounding) as a thin layer at the tips of the adjacent cells. Later (4–5 h post-wounding) labeling also appeared at the tips of the repair cells. Intense labeling at these sites continued throughout the healing process until repair cell fusion, at which time the lectin labeling was reduced to a narrow ring around the area of fusion. When added to plants prior to wounding and continually monitored, these same lectins acted as inhibitors to the wound-healing response. Other control lectins showed no inhibitory effects. A crude extract solution obtained from decapitated filaments stimulated the wound-healing response, and a lectin-binding component bound strongly to a protein-binding transfer membrane. These results suggest that the labeled compound is a glycoprotein that has α-D-mannosyl residues and is similar to the repair hormone rhodomorphin found in Griffithsia pacifica Kylin. 相似文献
17.
Eunyoung Shim Junbo Shim Tatyana A. Klochkova Jong Won Han Gwang Hoon Kim 《Journal of phycology》2012,48(4):916-924
Egg and sperm binding and correct recognition is the first stage for successful fertilization. In red algae, spermatial attachment to female trichogynes is mediated by a specific binding between the lectin(s) distributed on the surface of trichogyne and the complementary carbohydrates on the spermatial surface. A female‐specific lectin was isolated from Aglaothamnion callophyllidicola by agarose‐bound fetuin affinity chromatography. Two proteins, 50 and 14 kDa, eluted from the fetuin column were separated using a native‐polyacrylamide gel electrophoresis method and subjected to a gamete binding assay. The 50 kDa protein, which blocked spermatial binding to female trichogynes, was used for further analysis. Internal amino acid sequence of the 50 kDa protein was analyzed using matrix‐assisted laser desorption/ionization‐mass spectrometry and degenerated primers were designed based on the information. A full‐length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends polymerase chain reaction (PCR). The cDNA was 1552 bp in length and coded for a protein of 450 amino acids with a deduced molecular mass of 50.7 kDa, which agreed well with the protein data. Real‐time PCR analysis showed that this protein was up‐regulated about 10‐fold in female thalli. As the protein was novel and showed no significant homology to any known proteins, it was designated Rhodobindin. 相似文献
18.
19.
We performed interspecific hybridization in the haploid blade‐forming marine species (nori) of the genus Porphyra, which have a heteromorphic life cycle with a haploid gametophytic blade and a diploid microscopic sporophyte called the “conchocelis phase.” The green mutant HGT‐6 of P. tenera var. tamatsuensis A. Miura was crossed with the wildtype HG‐1 of P. yezoensis f. narawaensis A. Miura; the F1 heterozygous conchocelis developed normally and released numerous conchospores. However, almost all the conchospore germlings did not survive past the four‐cell stage or thereabouts, and only a few germlings developed into gametophytic blades. These results indicate that hybrid breakdown occurred during the meiosis, while the surviving F1 gametophytic blades were considered a breakthrough in the interspecific hybridization of Porphyra. Organelle genomes (cpDNA and mtDNA) were found to be maternally inherited in the interspecific hybridization by molecular analyses of the organelle DNA. In particular, molecular analyses of nuclear DNA revealed that the surviving F1 blades were allodiploids in the haploid gametophytic phase; however, there is a possibility of the occurrence of rapid chromosomal locus elimination and rearrangement in the F1 conchocelis phase. Our findings are noteworthy to the breeding of cultivated Porphyra and will provide important information for understanding of the speciation of marine plants with high species diversity. 相似文献
20.
Previous studies have established that the 5′ end of the mitochondrial gene COI (cytochrome oxidase subunit I) is useful for rapid and reliable identification of red algal species and have demonstrated that our understanding of red algal biodiversity and biogeography is fragmentary. In this context, we are completing a thorough sampling along the Canadian coast and using the DNA barcode for the assignment of collections to genetic species to explore algal diversity in the Canadian flora. In the present study, we provide results regarding diversity of members of the red algal family Phyllophoraceae. We have analyzed 354 individuals from the Arctic, Atlantic, and Pacific coasts of Canada, as well as 26 specimens from the USA, Europe, and Australia, resolving 29 species based on the analyses of the DNA barcode. Twenty‐three of these genetic species were present in Canada where only 18 species are currently recognized, including Ceratocolax hartzii Rosenv., which was in the same genetic species group as its host Coccotylus truncatus (Pall.) M. J. Wynne et N. J. Heine and is thus transferred to Coccotylus, C. hartzii (Rosenv.) comb. nov., but retained as a distinct species owing to its unique habit and phenology. Our results revealed the presence of cryptic diversity within the genera Coccotylus, Mastocarpus, Ozophora, and Stenogramme, for which we resurrect Coccotylus brodiei (Turner) Kütz. and describe Mastocarpus pachenicus sp. nov., Ozophora lanceolata sp. nov., and Stenogramme bamfieldiensis sp. nov., leaving a multitude of unnamed Mastocarpus spp. in need of further taxonomic study. In addition, we report range extensions into British Columbia of Besa papillaeformis Setch., previously known only from its type and nearby localities in California; Gymnogongrus crenulatus (Turner) J. Agardh, recorded only from the Atlantic; and Stenogramme cf. rhodymenioides Joly et Alveal, previously only known from South America. Finally, the phylogenetic affinities of the Canadian species of Phyllophoraceae characterized in this study were investigated using LSU rDNA, RUBISCO LSU (rbcL), and combined analyses. 相似文献