首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B型烟粉虱对三种寄主植物及其挥发物的行为反应   总被引:22,自引:2,他引:20  
利用Y型嗅觉仪,测定了B型烟粉虱Bemisia tabaci(Gennadius)雌虫对3种寄主植物、挥发物提取液、挥发物标样以及寄主植物挥发物模拟样的行为反应,并比较鉴定寄主植物挥发物的组分和含量,以期明确植物挥发物在B型烟粉虱寄主定向行为中的作用。结果表明:1)番茄植株和甘蓝植株及其相应的挥发物提取物对烟粉虱雌成虫均具有显著的引诱作用,而辣椒植株和挥发物提取物的引诱作用不明显;3种寄主植物和挥发物提取物分别两两之间比较时,烟粉虱的选择行为均极显著地表现为番茄 > 甘蓝 > 辣椒。2)番茄、甘蓝和辣椒具有不同的挥发物化学图谱,且挥发物组分的相对百分含量差异很大;番茄挥发物总量远远大于甘蓝和辣椒;从组分来看,番茄挥发物中主要为萜烯类(89.8%),甘蓝挥发物中主要为烷烃类(53.0%)。3)8种寄主植物挥发物标样(10-1~10-6 μL/μL)中,除1,8-桉树脑始终对烟粉虱具有引诱作用外,丁子香酚、苎烯、里那醇和月桂烯则是分别在10-4~10-6,10-1~10-4,10-1~10-4和10-1~10-4μL/μL时,才具有引诱作用;α-蒎烯、顺-3-已烯-1醇则在高浓度下(10-1和10-2 μL/μL)对烟粉虱具有排斥作用,低浓度下对烟粉虱没有任何影响;正十二烷在任何浓度下对烟粉虱均没有任何作用。4)在辣椒上分别喷施番茄挥发物模拟样和甘蓝挥发物模拟样,均显著增加对烟粉虱的引诱作用,而在番茄上喷施辣椒挥发物模拟样则无明显增效作用。综合分析认为,挥发性物质在B型烟粉虱对不同寄主植物的选择偏好时具有重要的行为导向作用。  相似文献   

2.
Plant virus infections are known to alter host plant attractiveness and suitability for insect herbivores.This study was conducted to determine how cucumber mosaic virus (CMV)-infected chilli plants affect the fitness and settling preferences ofnonvector whitefly,Bemisia tabaci adults under dual-choice conditions with volatile organic compounds analyzed using solid phase microextraction coupled with gas chromatography-mass spectrometry (GC-MS).Results showed that the presence of CIVIV in chilli plants substantially affects the settling preferences of the B.tabaci,which preferred to settle on noninfected plants.Duration of the egg stage and the longevity and fecundity of adult B.tabaci on CMV-infected chilli plants were not markedly different from those on noninfected chilli plants.In contrast,the developmental time from egg to adult was significantly reduced in CMV-infected chilli plants compared to the noninfected plants.The results also showed that CMV-infected chilli plants released significantly more linalool and phenylacetaldehyde than noninfected plants.Overall,it was suggested that the behavioral response of B.tabaci might be modified by CMV-infected plants,which alter the release of specific headspace volatiles.Based on these results,the modification of plant volatile profiles may help in enhancing the effectiveness of biological control and the protection of crop plants against B.tabaci.  相似文献   

3.
The ability of zoophytophagous predators to produce defensive plant responses due to their phytophagous behavior has been recently demonstrated. In the case of tomatoes, the mirids Nesidiocoris tenuis and Macrolophus pygmaeus are able to attract or repel pests and/or natural enemies in different ways. Nevertheless, the herbivore-induced plant volatiles (HIPVs) released by the phytophagy of both mirids, which are responsible for these behaviors, are unknown. In this work, the HIPVs produced by the plant feeding of N. tenuis and M. pygmaeus were characterized. In addition, the role of each HIPV in the repellence or attraction of two tomato pests, Bemisia tabaci and Tuta absoluta, and of the natural enemy Encarsia formosa was evaluated. Six green leaf volatiles (GLVs) plus methyl salicylate and octyl acetate clearly stood out as major differential peaks on the chromatogram in a directed analysis. The six GLV and methyl salicylate were repellent for B. tabaci and attractive to E. formosa, whereas they showed no effect on T. absoluta. Octyl acetate, which was significantly present only in the M. pygmaeus-punctured plants, was significantly attractive to T. absoluta, repellent to E. formosa and indifferent to B. tabaci. Unlike the remaining HIPVs, octyl acetate was emitted directly by M. pygmaeus and not by the plant. Our results showed that mirid herbivory could modulate the pest and natural plant enemy locations, since tomato plants release a blend of volatiles in response to this activity. These results could serve as a basis for future development of plant protection.  相似文献   

4.
Knowledge about the orientation mechanisms used by two important predaceous mirids (Macrolophus pygmaeus Rambour and Nesidiocoris tenuis (Reuter)) in finding their prey (whitefly Bemisia tabaci (Gennadius) and the tomato borer Tuta absoluta (Meyrick)) is limited. In a Y-tube olfactometer, we tested the behavioral responses of naïve and experienced predators to uninfested plants, herbivore-induced plant volatiles (HIPVs) from plants infested with T. absoluta and/or B. tabaci, the sex pheromone of T. absoluta, and volatiles produced by plants injured by the predators. Nesidiocoris tenuis responds to volatiles produced by uninfested plants only after experience with the plant, whereas naïve and experienced M. pygmaeus show positive chemotaxis. Both predators are attracted to volatiles from prey-infested plants, and we provide the first evidence that experience affects this response in M. pygmaeus. Infestation of the same plant by both prey species elicited similar responses by the two predators as plants infested by either herbivore singly. Neither predator responded to sex pheromones of T. absoluta. Macrolophus pygmaeus avoided plants injured by conspecifics, while N. tenuis females were attracted by such plants. The implications of these results for augmentative biological control are discussed.  相似文献   

5.
In transmitting plant viruses, insect vectors undergo physiological and behavioral alterations. The whitefly Bemisia tabaci is a vector of tomato yellow leaf curl virus (TYLCV), causing severe damages to various horticultural crop plants. To determine whether whitefly alteration is specific to vector species, the responses to TYLCV ingestion were compared between B. tabaci and Trialeurodes vaporariorum, a nonvector for TYLCV. The two species were reared on TYLCV‐infected and noninfected tomato, a host of TYLCV, and their longevity and fecundity were determined while rearing in either tomato or eggplant, a nonhost of TYLCV. TYLCV‐ingested B. tabaci increased their developmental rates but reduced fecundity when they were reared in either tomato or eggplant compared with those of TYLCV‐free ones. In contrast, TYLCV‐ingested T. vaporariorum did not show any of the aforementioned changes when reared on both plant species. In addition, TYLCV‐ingested B. tabaci increased their levels of three heat shock protein genes ( hsp20, hsp70, and hsp90) against thermal stress, whereas TYLCV‐ingested T. vaporariorum did not. The presence of TYLCV virions was identified in two colonies of both species via polymerase chain reaction analysis. TYLCV was detected in the whole body, saliva, and eggs of B. tabaci, while TYLCV was detected only in the whole body but not in the saliva and eggs of T. vaporariorum. The present results strongly indicated that TYLCV specifically manipulate physiological processes of the vector species, B. tabaci.  相似文献   

6.
Encarsia formosa Gahan is a solitary endoparasitoid that is commercially reared and released for augmentative biological control of whiteflies including Bemisia tabaci (Gennadius). Bemisia tabaci biotypes B and Q are two most invasive species that greatly reduce crop yields in China by feeding on plant sap and by transmitting Tomato Yellow Leaf Curl Virus (TYLCV). The effects of TYLCV infection of tomato on E. formosa foraging on B. tabaci B and Q are unknown. In Y-tube olfactometer assays in the present study, E. formosa significantly preferred TYLCV-infected tomato plants over TYLCV-free plants. The wasp females also significantly preferred TYLCV-infected tomato plants infested with 3rd-instar nymphs of B. tabaci biotype Q over TYLCV-free plants with biotype Q nymphs. However, no significant differences were observed when B. tabaci biotype B was infested on tomato plants. The oviposition bioassays confirmed that TYLCV infection on tomato plants resulted in the recruitment of parasitoids. These results indicate that TYLCV-infection of tomato increase the foraging of E. formosa on B. tabaci, as differs on the B and Q biotypes.  相似文献   

7.
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), B and Q biotypes have caused severe losses to crops and vegetables through virus transmission. Our previous studies showed that Q is more efficient than B in acquisition and transmission of tomato yellow leaf curl virus (TYLCV) and viruliferous Q is better equipped than B in counterattacking jasmonic acid (JA)‐related plant defense. To understand how plant‐mediated defensive responses involving JA affect insect vectors within a tritrophic framework of plants, insects, and viruses, we examined the effects of exogenous JA on preference and performance of non‐viruliferous and viruliferous B and Q on tomato plants (Solanum lycopersicum L., Solanaceae). Our results demonstrated a significantly lower fecundity, shorter longevity, shorter developmental time, and lower survival rate of whiteflies on JA‐treated than on control plants. In addition, viruliferous Q performed significantly better than B in fecundity, longevity, developmental time, and survival rate. When given a choice between JA‐treated and control tomato plants, viruliferous Q was not repelled to JA‐treated plants when the JA concentration was 0.01 and 0.1 mm , whereas others all preferred the untreated control plants. Exogenous JA increased the concentration and the composition of plant volatiles, such as α‐terpinene and β‐ocimene, which deterred whiteflies in a Y‐tube bioassay. It is worth noting that Q has a mutualistic relationship with TYLCV to counteract the host defenses. A better understanding of tritrophic interactions between plants, insects, and viruses will facilitate the development of sustainable management of this invasive global pest.  相似文献   

8.
Tomato chlorosis virus (ToCV), which is a newly emerged and rapidly spreading plant virus in China, has seriously reduced tomato production and quality over the past several years. In this study, the effect of ToCV on the demography of the whitefly, Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae), fed on infected and healthy tomato plants was evaluated using the age‐stage, two‐sex life table. When reared on ToCV‐infected tomato plants, the fecundity, length of oviposition period and female adult longevity of B. tabaci biotype Q decreased significantly, while the pre‐adult duration significantly increased compared to controls reared on healthy tomatoes. Consequently, the intrinsic rate of increase (r) and finite of increase (λ) of B. tabaci biotype Q on ToCV‐infected tomato plants significantly decreased compared to those on healthy tomatoes. Population projection predicted that a population of B. tabaci biotype Q fed on ToCV‐infected tomatoes increases slower than on healthy plants. These findings demonstrated that ToCV infection decreased the performance of B. tabaci biotype Q on tomato plants.  相似文献   

9.
Lecanicillium muscarium is a widely occurring entomopathogenic fungus. Laboratory studies were conducted to determine the efficacy of L. muscarium against different instars of Bemisia tabaci on tomato and verbena foliage after two incubation times (3 and 7 days). Significant reduction in B. tabaci numbers were recorded on fungus treated plants (p < 0.001). Second instar B. tabaci proved most susceptible to L. muscarium infection. There was no significant difference in mortality of B. tabaci second instars after either 3 or 7 days exposure to L. muscarium on either host plant. The importance of the speed of pest mortality following treatment and the potential of L. muscarium to be incorporated into an integrated pest management strategy for the biocontrol of B. tabaci on tomato and verbena plants are discussed.  相似文献   

10.
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a highly polyphagous herbivore. This research was conducted to compare the development of B. tabaci reared in a multi‐plant treatment (polyculture) with those in single‐plant treatments (monocultures). Adult B. tabaci females fed on a mixture of tomato, cabbage, cotton, cucumber, and kidney bean survived longer and laid more eggs than those fed exclusively on one of these plant species. Egg numbers per plant laid in the polyculture treatment were positively correlated with those laid on the same plant species in the monoculture treatments, and egg numbers per plant laid on tomato, cotton, and cucumber in the polyculture were significantly higher than those laid on the same plants in the monocultures. Concentrations of total protein and trehalose in B. tabaci were not significantly different after 7 days of feeding in the respective treatments, but activities of superoxide dismutases (SOD) and alkaline phosphatase (AKP) of B. tabaci in polyculture were lower than those in monoculture. Conversely, activities of trehalase, sucrase, and amylase in B. tabaci kept in polyculture were higher than those of insects from the monoculture. In each of the monoculture treatments, there was a negative correlation between AKP in B. tabaci and oviposition, and also between AKP and amylase. SOD and sucrase activities in B. tabaci were positively correlated with polyphenol oxidase (PPO) and peroxidase (POD) activities in plants. In the plants damaged by whiteflies in the polyculture treatment, activities of SOD in cucumber, PPO in cotton and kidney bean, and POD in tomato and cucumber were lower than those in the monoculture treatments, whereas SOD in cabbage and catalase (CAT) in tomato in the polyculture treatment were higher than those in the monoculture treatments.  相似文献   

11.
Upon sensing attack by pathogens and insect herbivores, plants release complex mixtures of volatile compounds. Here, we show that the infection of lima bean (Phaseolus lunatus L.) plants with the non-host bacterial pathogen Pseudomonas syringae pv. tomato led to the production of microbe-induced plant volatiles (MIPVs). Surprisingly, the bacterial type III secretion system, which injects effector proteins directly into the plant cytosol to subvert host functions, was found to prime both intra- and inter-specific defense responses in neighbouring wild tobacco (Nicotiana benthamiana) plants. Screening of each of 16 effectors using the Pseudomonas fluorescens effector-to-host analyser revealed that an effector, HopP1, was responsible for immune activation in receiver tobacco plants. Further study demonstrated that 1-octen-3-ol, 3-octanone and 3-octanol are novel MIPVs emitted by the lima bean plant in a HopP1-dependent manner. Exposure to synthetic 1-octen-3-ol activated immunity in tobacco plants against a virulent pathogen Pseudomonas syringae pv. tabaci. Our results show for the first time that a bacterial type III effector can trigger the emission of C8 plant volatiles that mediate defense priming via plant–plant interactions. These results provide novel insights into the role of airborne chemicals in bacterial pathogen-induced inter-specific plant–plant interactions.  相似文献   

12.
Abstract Bemisia tabaci (Gennadius) has been considered as a serious pest in all of tropical, subtropical and temperate regions of the world. B. tabaci first recorded as early as in 1940s in China and has been reported as a pest of various crops in 22 provinces or cities. But only recently it has become a severe problem for vegetable and ornamental crops in Guangdong and Beijing. In China B. tabaci is known to transmit at least 5 plant viruses, including tomato yellow leaf curl virus (TYLCV), tomato leaf curl virus (TomLCV), squash leaf curl virus (SqLCV‐C). So far, approximately 18 parasitoids, 17 predators and 1 pathogenic fungus were recorded in China. This paper presents an overview of B. tabaci as a pest and virus vector in China, with special attention given to non‐chemical control strategies.  相似文献   

13.
The native parasitoid Eretmocerus mundus Mercet and the predator Macrolophus pygmaeus Rambur are widely used to control Bemisia tabaci (Gennadius) in Mediterranean tomato greenhouses. An optimal biological control strategy for B. tabaci should take into account intraguild interactions between these natural enemies. In this study, predator's prey preferences and prey consumption were studied when offered different parasitoid and whitefly stages. The effect of the host plant on the adults of both natural enemies was also examined. M. pygmaeus preferred to consume B. tabaci over E. mundus when immature stages and adults of B. tabaci and E. mundus were offered. They consumed a larger amount of healthy B. tabaci nymphs and adults than of parasitised nymphs or E. mundus adults. The predator M. pygmaeus interfered with the reproduction of E. mundus females on cotton but not on tomato. However, B. tabaci nymphal mortality on tomato associated with parasitoid host feeding was also lower when the adult parasitoids coexisted with the predators. The joint release of M. pygmaeus and E. mundus adults did not increase the control of the whitefly B. tabaci.  相似文献   

14.
Western flower thrips (WFTs), Frankliniella occidentalis Pergrande, and onion thrips (OTs), Thrips tabaci Lindeman, are two cosmopolitan insect pests of agricultural and horticultural plants. Understanding the occurrence and development of thrips on plants is crucial for identifying suitable plants that can be used for developing a “push-pull” strategy against thrips. In this study, the dynamics of WFTs and OTs on plants (Allium fistulosum L., Medicago sativa L., Luffa cylindrica (L.) Roem., Ocimum basilicum L., and Schizonepeta tenuifolia (Benth.) Briq.) were investigated for two consecutive years (2018–2019). Throughout the survey, the abundances of both thrips species were strongly associated with plant species and plant phenology; both thrips species were present at relatively high densities on M. sativa but very low densities on O. basilicum and S. tenuifolia. Populations of both thrips species greatly increased during plant flowering. A Y-tube olfactory test was used to study the effects of plant volatiles in mediating thrips behaviour and showed that volatiles of M. sativa were attractive to both thrips species whether emitted by the plant in the vegetative or flowering stage, while volatiles of O. basilicum and S. tenuifolia were repellent to thrips. Additionally, because of the presence of a high number of floral chemicals, both thrips species exhibited a greater preference for volatiles emitted by plants in the flowering period over those emitted by plants in the vegetative period. Our observations indicate that plant species and flowering status play an important role in the abundance dynamics of thrips and that the volatiles of flowering plants attract thrips more strongly than volatiles emitted by vegetative plants. These findings can facilitate the screening of attractive/unattractive plants for developing push-pull strategies to control thrips.  相似文献   

15.
The continuous rise of CO2 concentrations in the atmosphere is reducing plant nutritional quality for herbivores and indirectly affects their performance. The whitefly (Bemisia tabaci, Gennadius) is a major worldwide pest of agricultural crops causing significant yield losses. This study investigated the plant‐mediated indirect effects of elevated CO2 on the feeding behavior and life history of B. tabaci Mediterranean species. Eggplants were grown under elevated and ambient CO2 concentrations for 3 weeks after which plants were either used to monitor the feeding behavior of whiteflies using the Electrical Penetration Graph technique or to examine fecundity and fertility of whiteflies. Plant leaf carbon, nitrogen, phenols and protein contents were also analyzed for each treatment. Bemisia tabaci feeding on plants exposed to elevated CO2 showed a longer phloem ingestion and greater fertility compared to those exposed to ambient CO2 suggesting that B. tabaci is capable of compensating for the plant nutritional deficit. Additionally, this study looked at the transmission of the virus Tomato yellow leaf curl virus (Begomovirus) by B. tabaci exposing source and receptor tomato plants to ambient or elevated CO2 levels before or after virus transmission tests. Results indicate that B. tabaci transmitted the virus at the same rate independent of the CO2 levels and plant treatment. Therefore, we conclude that B. tabaci Mediterranean species prevails over the difficulties that changes in CO2 concentrations may cause and it is predicted that under future climate change conditions, B. tabaci would continue to be considered a serious threat for agriculture worldwide.  相似文献   

16.
Tomato line LA1478 and Pusa Ruby were resistant to tomato leaf curl virus (TLCV) disease. They registered higher plant height, number of branches, total phenol content and yield per plant than the other cultivars. Variety Peto 86 was tolerant to the disease while the other popular tomato cultivars, i.e. Ace, Early Pack, Money Maker, Prichard and Strain B were highly susceptible to the disease. Plant height and number of branches per plant revealed significantly positive association with fruit yield per plant. The disease index of TLCV exhibited significant negative correlations with plant height, total phenol content and fruit yield per plant – 0–4 and 5–25 adult whiteflies were observed on resistant susceptible cultivars. In the case of epiphytically colonisation by Beauveria bassiana conidia, not all developing hyphae on the leaf surface penetrated the whitefly cuticle. Many of the germ tubes elongated to a short distance before terminating its growth. On the other hand, the rapid staining of tomato tissues injected with B. bassiana conidial suspension indicates that the entomopathogenic fungus was established inside tomato tissues until the end time of the trial. The direct injection with the spore suspension yielded high post-colonisation, where the fungus was recovered from sites distant from the point of inoculation. This indicates that the fungus has the potential to move throughout the plant tissues. Laboratory bioassay of tomato whitefly feeding on tomato tissues containing B. bassiana conidial spores indicates that plant endophytic colonisation with entomopathogenic fungi may reduce insect survival on these plants. LT50 values of the test diet were between three and four days. The mortality of Bemisia tabaci was high in the case of endophytically colonisation compared to epiphytically one (90.0% compared to 10.0% during three days) for whiteflies fed tomato tissues containing 1.5 × 107 B. bassiana spores/ml. Application of B. bassiana as an artificial endophyte inside tomato plants can be an important component in the integrated control of tomato whiteflies. The endophytic colonising can achieve biocontrol effect based on induced disease resistance in plant tissues. According the available references, this is the first report on B. tabaci controlling by plant endophytic treatment.  相似文献   

17.
18.
Emission of herbivore-induced plant volatiles (HIPVs) can differ according to the type of herbivory and the plant development stage, ultimately affecting recruitment of the natural enemy. Little is known about plant defenses induced at the flowering stage by phloem-feeding insects. We investigated the olfactory preference of Encarsia desantisi parasitoids and the chemical profile of flowering melon plants induced or not by the phloem-feeding of Bemisia tabaci whiteflies. In addition, we tested whether the parasitoids were attracted to synthetic defensive HIPVs, which mimicked whitefly-infested flowering melons. The parasitoids recognized volatiles from undamaged melons but preferred the scent of host-infested melons in olfactometry assays. Amounts of most individual volatiles did not differ between plant treatments; however, only whitefly-induced melons released methyl salicylate and tetradecane, compounds known to attract parasitoids. Interestingly, grouping volatiles by chemical classes revealed that whitefly-infested melon released larger amounts of monoterpenes and smaller amounts of benzenoids than undamaged melons, which might underlying the parasitoid attraction and indicate a possible trade-off between defensive and reproductive defenses at the melon flowering stage. Additionally, E. desantisi preferred the mix of synthetic and defensive HIPVs over hexane (control), opening a new avenue for further investigations in using olfactory lures for B. tabaci biological control. This study is the first report of induced defenses in melon plants and their mediation in a tritrophic interaction, as well as the first record of E. desantisi behavioral preference for HIPVs.  相似文献   

19.
The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a key pest of tomato (Solanum lycopersicum L.) and other vegetable crops worldwide. To combat this pest, a non-crop banker plant system was evaluated that employs a parasitoid, Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) with whitefly, Trialeurodes variabilis (Quaintance) (Hemiptera: Aleyrodidae), as an alternative host for rearing and dispersal of the parasitoid to the target pest. (a) Multi-choice and no-choice greenhouse experiments were conducted to determine host specificity of T. variabilis to papaya (Carica papaya L.) and three vegetable crops including tomato, green bean (Phaseolus vulgaris L.), and cabbage (Brassica oleracea L.). The result showed that papaya was an excellent non-crop banker plant for supporting the non-pest alternative host, T. variabilis, whose adults had a strong specificity to papaya plants for feeding and oviposition in both multi-choice and no-choice tests. (b) The dispersal ability of E. sophia was investigated from papaya banker plants to tomato and green bean plants infested with B. tabaci, as well as to papaya control plants infested with T. variabilis; and (c) the percent parasitism by E. sophia on T. variabilis reared on papaya plants and on B. tabaci infested on tomato plants was also evaluated. These data proved that E. sophia was able to disperse at least 14.5 m away from papaya plants to target tomato, bean or papaya control plants within 48–96 h. Furthermore, E. sophia was a strong parasitoid of both T. variabilis and B. tabaci. There was no significant difference in percent parasitism by E. sophia on T. variabilis (36.2–47.4%) infested on papaya plants or B. tabaci (29–45.9%) on tomato plants. Thus, a novel banker plant system for the potential management of B. tabaci was established using papaya as a non-crop banker plant to support a non-pest alternative host, T. variabilis for maintaining the parasitoid to control B. tabaci. The established banker plant system should provide growers with a new option for long-term control of B. tabaci in greenhouse vegetable production. Ongoing studies on the papaya banker plant system are being performed in commercial greenhouses.  相似文献   

20.
Indian tomato leaf curl virus (ToLCV) (Geminiviridae: Sub-group III) was detected both in field-collected and laboratory-reared B. tabaci using a triple-antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA). ToLCV was detected in six of the 10 group samples of field collected B. tabaci. ToLCV was also identified in 13 weed species commonly found in Karnataka, both by symptom expression and TAS-ELISA. ToLCV from c. 61% of infected plants was transmitted successfully to tomato by B. tabaci. Tomato plots were planted at three locations on the University of Agricultural Sciences Campus, Bangalore. Indian tomato leaf curl virus disease (ToLCVD) incidence increased most rapidly when the tomato plot was situated adjacent to an older ToLCVD-infected tomato field. When the plots were positioned in a dryland or a wetland area, at least 500 m away from any infected tomato fields, the ToLCVD incidence increased less rapidly, although in all sites it was 100% by 11 wk after transplanting. The numbers of B. tabaci caught on yellow traps in all sites increased during weeks 1–3 after transplanting and thereafter remained at between 10–15 adults trap-1 24 h_1. Adult numbers recorded on tomato plants by direct counts remained approximately constant at 2–4 adults plant“”1. Tomato fields were planted in three taluks (administrative areas) of Karnataka, that had different current and previous histories of tomato production. ToLCVD incidence increased most and least rapidly, respectively, in Kolar taluk where tomato is grown continuously and Doddaballapur tuluk where tomato was grown in the area for the first time. In Malur tuluk, where tomato was grown discontinuously (once a year), the incidence of ToLCVD increased at an intermediate rate. Weed host-plant species growing near the experimental sites had averages of between 1.5–10.0 B. tabaci nymphs per plant, whereas the tomato plants had only 0.3 nymphs per plant. The percentage parasitism of B. tabaci nymphs on tomato and weed species, respectively, was 0.7% and 2–6%. Nymphs and pupae were parasitised by an Encarsia sp. and Eretmocerus mundus Mercet. The relevance and implications of these findings for the epidemiology and management of ToLCVD in Karnataka State, South India is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号