首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synopsis As new arctic marine fisheries develop there is need for a comprehensive ecosystem approach to long-term management. This approach recognizes the importance of community interactions such as food web structure and trophic patterns. We determined whether hierarchical clustering (guild formation) is an effective method of trophic evaluation in deep-sea Artic fish communities using stomach content and parasite data with size class, and evaluated the application of endohelminth communities (parasite species transmitted in the food) as indicators of trophic status. Cluster analysis using food group abundance with size class of fish revealed the presence of 11 guilds within the community, however the same analysis using parasite data showed little correlation between food and parasites. Redundancy analysis (RDA) within the 11 guilds also revealed no significant correlations between food group and parasite abundance suggesting that this type of ordination is not suited for environments containing mainly generalist feeders. RDA of individual taxa without a priori guild designation found that taxa in benthic deep-sea communities are defined by their ability to exploit prey species in more than one habitat zone. Benthic fish species were significantly correlated with benthic food groups and parasites that utilize benthic intermediate hosts whereas benthopelagic–pelagic species fed on a higher diversity of prey species and were infected by a larger number of non-host specific parasites. Eigenanalysis and Monte Carlo results showed that parasites and food groups are highly correlated, indicating that parasite community analysis is an effective tool for predicting feeding strategies in Arctic marine environments. It also suggests that in most cases endoparasite infections alone could be used for trophic evaluation in the absence of stomach content data.  相似文献   

2.
Cyclical industrial networks are becoming highly desirable for their efficient use of resources and capital. Progress toward this ideal can be enhanced by mimicking the structure of naturally sustainable ecological food webs (FWs). The structures of cyclic industrial networks, sometimes known as eco‐industrial parks (EIPs), are compared to FWs using a variety of important structural ecological parameters. This comparison uses a comprehensive data set of 144 FWs that provides a more ecologically correct understanding of how FWs are organized than previous efforts. In conjunction, an expanded data set of 48 EIPs gives new insights into similarities and differences between the two network types. The new information shows that, at best, current EIPs are most similar to those FWs that lack the components that create a biologically desirable cyclical structure. We propose that FWs collected from 1993 onward should be used in comparisons with EIPs, given that these networks are much more likely to include important network functions that directly affect the structure. We also propose that the metrics used in an ecological analysis of EIPs be calculated from an FW matrix, as opposed to a community matrix, which, to this point, has been widely used. These new insights into the design of ecologically inspired industrial networks clarify the path toward superior material and energy cycling for environmental and financial success.  相似文献   

3.
The aim of this study was to examine the community structure and vertical micro‐distribution of testate amoebae and ciliates in a raised bog in eastern Poland, as well as to assess the influence of potential food resources (Chl‐a, bacteria, heterotrophic flagellates) and predators (rotifers and copepods) on protozoa communities. Samples were taken from surface, bottom and interstitial waters. At each type of micro‐habitat and each sampling date water was sampled using a plexiglass corer or mini‐piezometers. Additionally, in order to evaluate grazing pressure, field enclosures were used in which metazoan abundance and composition was manipulated by size‐fractionation. Over experiments, metazoan populations shifted from dominance of rotifers to copepods. In the first experiment, with rotifers dominating, metazoa had only a modest predatory impact on the protozoa. In contrast, the second experiment, with copepods prevailing, demonstrated a clear top‐down control of the protozoa communities by metazoan. The density and biomass of protozoa significantly differed between the studied stations, with the lowest numbers in the interstitial water and the highest in the surface water. Surface sampling were dominated by mixotrophic taxa, whereas the deepest sampling level was characterized by increase in the proportion of bacterivore species. These differences between micro‐habitats may be due to differences in environmental conditions (food resources and grazing pressure). Ordination analysis revealed that bacteria can strongly regulate the abundance and taxonomic composition of protozoa in the bottom and interstitial waters. Metazoan predators could be the main regulators of protozoa communities in surface water. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
5.
Stable isotope (δ13C and δ15N) and gut content analyses were used to investigate size‐related feeding habits of four reef fishes (the beaugregory Stegastes leucostictus, the french grunt Haemulon flavolineatum, the schoolmaster snapper Lutjanus apodus and the yellowtail snapper Ocyurus chrysurus) inhabiting an offshore (non‐estuarine) mangrove islet off Belize, Central America. Comparisons of isotopic niche space and Schoener diet similarity index suggested a low to moderate degree of niche overlap between fish size groups. The δ13C gradient between mangrove and seagrass prey as well as results of Bayesian mixing models revealed that sampled fishes relied mostly on seagrass prey items. Only small and large juveniles of the carnivorous species L. apodus derived a part of their diet from mangroves by targeting mangrove‐associated Grapsidae crabs and fish prey, respectively. Isotopic niche shifts were particularly obvious for carnivorous fishes that ingested larger prey items (Xanthidae crabs and fishes) during their ontogeny. The utilization of mangrove food resources is less than expected and depends on the ecology and life history of the fish species considered. This research highlights that mangrove‐derived carbon contributed relatively little to the diets of four fish taxa from an offshore mangrove islet.  相似文献   

6.
The present study demonstrated that the climbing perch Anabas testudineus collected and stocked food pellets in its mouth, a behaviour that has not yet been reported in any other species of fish. In this species, food deprivation for 24 h increased food stocking, but not food intake.  相似文献   

7.
Climate change is altering the rate and distribution of primary production in the world's oceans. Primary production is critical to maintaining biodiversity and supporting fishery catches, but predicting the response of populations to primary production change is complicated by predation and competition interactions. We simulated the effects of change in primary production on diverse marine ecosystems across a wide latitudinal range in Australia using the marine food web model Ecosim. We link models of primary production of lower trophic levels (phytoplankton and benthic producers) under climate change with Ecosim to predict changes in fishery catch, fishery value, biomass of animals of conservation interest, and indicators of community composition. Under a plausible climate change scenario, primary production will increase around Australia and generally this benefits fisheries catch and value and leads to increased biomass of threatened marine animals such as turtles and sharks. However, community composition is not strongly affected. Sensitivity analyses indicate overall positive linear responses of functional groups to primary production change. Responses are robust to the ecosystem type and the complexity of the model used. However, model formulations with more complex predation and competition interactions can reverse the expected responses for some species, resulting in catch declines for some fished species and localized declines of turtle and marine mammal populations under primary productivity increases. We conclude that climate‐driven primary production change needs to be considered by marine ecosystem managers and more specifically, that production increases can simultaneously benefit fisheries and conservation. Greater focus on incorporating predation and competition interactions into models will significantly improve the ability to identify species and industries most at risk from climate change.  相似文献   

8.
Trophic cascades in which predators regulate densities of organisms at lower trophic levels are important drivers of population dynamics, but effects of trophic cascades on ecosystem‐level fluxes and processes, and the conditions under which top‐down control is important, remain unresolved. We manipulated the structure of a food web in boreal feather mosses and found that moss‐inhabiting microfauna exerted top‐down control of N2‐fixation by moss‐associated cyanobacteria. However, the presence of higher trophic levels alleviated this top‐down control, likely through feeding on bacterivorous microfauna. These effects of food‐web structure on cyanobacterial N2‐fixation were dependent on global change factors and strongly suppressed under N fertilisation. Our findings illustrate how food web interactions and trophic cascades can regulate N cycling in boreal ecosystems, where carbon uptake is generally strongly N‐limited, and shifting trophic control of N cycling under global change is therefore likely to impact ecosystem functioning.  相似文献   

9.
Aims To evaluate the role of native predators (birds) within an Australian foodweb (lerp psyllids and eucalyptus trees) reassembled in California. Location Eucalyptus groves within Santa Cruz, California. Methods We compared bird diversity and abundance between a eucalyptus grove infested with lerp psyllids and a grove that was uninfested, using point counts. We documented shifts in the foraging behaviour of birds between the groves using structured behavioural observations. Additionally, we judged the effect of bird foraging on lerp psyllid abundance using exclosure experiments. Results We found a greater richness and abundance of Californian birds within a psyllid infested eucalyptus grove compared to a matched non‐infested grove, and that Californian birds modify their foraging behaviour within the infested grove in order to concentrate on ingesting psyllids. This suggests that Californian birds could provide indirect top‐down benefits to eucalyptus trees similar to those observed in Australia. However, using bird exclosure experiments, we found no evidence of top‐down control of lerp psyllids by Californian birds. Main conclusions We suggest that physiological and foraging differences between Californian and Australian pysllid‐eating birds account for the failure to observe top‐down control of psyllid populations in California. The increasing rate of non‐indigenous species invasions has produced local biotas that are almost entirely composed of non‐indigenous species. This example illustrates the complex nature of cosmopolitan native‐exotic food webs, and the ecological insights obtainable through their study.  相似文献   

10.
11.
The palaeoenvironmental context of a section of the Devonian Ponta Grossa Formation (Paraná Basin) was examined using an integrated ichnological and taphonomic approach. Three taphofacies (T‐A, T‐B and T‐C) and six ichnofabrics are recognized. T‐A is mainly composed of disarticulated organisms and is associated with Chondrites, Planolites‐Palaeophycus, Asterosoma‐Zoophycos and Asterosoma‐Chondrites ichnofabrics, representing the Cruziana ichnofacies. The upward increase in diversity and abundance of body fossils for Taphofacies A can be explained by changes in sedimentation rates during aggradational to progradational phases. T‐B beds, represented by articulated brachiopods, occur in distal tempestites associated with the Skolithos ichnofabric (Skolithos ichnofacies) and represent higher hydrodynamic energy and oxygenation than in T‐A. Taphofacies C, characterized by a mix of articulated and disarticulated organisms, generally lacks bioturbation except for Chondrites ichnofabrics occurring only at the bed tops, suggesting low substrate oxygenation and low‐energy conditions. T‐C indicates the maximum transgression in the T‐R cycle, characterizing it as a good indicator of maximum flooding surfaces. The composite AsterosomaTeichichnus ichnofabric (bioturbation degree 5) occurs in layers without body fossils and represents suites of the Cruziana ichnofacies. This likely reflects intense intrastratal activity at all substrate levels, which facilitated the oxygenation of the substrate disallowing the preservation of organism remains. This observation indicates that the bioturbation is an important factor controlling the loss of taphonomic information within the TAZ, mainly when associated with detritus‐feeding trace fossils.  相似文献   

12.
Community‐level studies have shown that plant–pollinator interactions are much more generalized than previously expected. Consequently, many authors have questioned the significance of phenotypic complementarity between plants and pollinators and abundance effects in pollination interactions. Here, we compare the behaviour of three sunbird species feeding on the nectar of five plant species in afromontane vegetation. We studied the feeding behaviour with and without consideration of plant abundance (i.e. diet selectivity and diet composition, respectively). The aims of the study were to estimate: (1) how relative resource abundance influences flower selectivity; (2) the degree of phenotypic matching; and (3) whether different plant resource assessment methods give different answers to this question. The results showed that, although sunbirds frequently feed on both morphologically adapted and nonadapted plants, food selectivity data are consistent with the hypothesis of phenotypic complementarity. Moreover, we found that the type of plant abundance measurement can change conclusions in some cases, as individual plants differ in their growth habits and nectar production. This effect was most obvious for the assessment of selectivity of the northern double‐collared sunbird (Cinnyris reichenowi) and for Hypoestes aristata, a plant producing inflorescences composed of a large number of small flowers possessing small amounts of nectar per flower (a high abundance of flowers, but a low abundance of nectar relative to the remaining plant community). © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

13.
AimTrypanorhyncha cestodes comprise a wide range of heteroxenous parasites infecting elasmobranchs as definitive hosts. Limited data exist on the larval infection of these cestodes and the role of intermediate and paratenic hosts in the life cycle of these parasites. We investigated the factors that determine the occurrence and the level of infection of Grillotia plerocerci in the skeletal muscles of various benthonic sharks and analyzed the parasites through an integrative taxonomic approach.LocationMediterranean Sea.MethodsSharks obtained as bycatch of commercial trawling activities (i.e., Etmopterus spinax, Galeus melastomus, and Scyliorhinus canicula) were used in this study. Data from a limited number of Dalatias licha and Scyliorhinus stellaris were also included. Grillotia plerocerci were molecularly characterized using the partial 28S large subunit rDNA. Boosted regression trees were used to model the relationship between the abundance of infection with both morphological and physiological predictors in each host.ResultsPlerocerci of Grillotia were detected in all shark species except S. stellaris. Host species significantly differed in terms of parasite abundance, with the highest and lowest prevalence and abundance of infection detected in G. melastomus and E. spinax, respectively. The relative influence of the traits involved in explaining the parasite abundance was related to the host size in Gmelastomus, while both morphology‐ and physiology‐related traits explained the patterns observed in Espinax and Scanicula. The 28S rDNA sequences shared an identity of ∼99.40% with a Grillotia species previously found in the Mediterranean Sea. At intraspecific level, two different genotypes were found. A first type was retrieved only from Dlicha, whereas a second type was found in G. melastomus, E. spinax, and S. canicula.Main conclusionsPresent results suggest that the two genotypes could be involved in different consumer‐resource systems and confirm most of the examined shark species as transport hosts of Grillotia species for unknown larger top predators.  相似文献   

14.
Estuaries are among the most productive and economically important marine ecosystems at the land–ocean interface and contribute significantly to exchange of CO2 with the atmosphere. Estuarine microbial communities are major links in the biogeochemical C cycle and flow of C in food webs from primary producers to higher consumers. Considerable attention has been given to bacteria and autotrophic eukaryotes in estuarine ecosystems, but less research has been devoted to the role of heterotrophic eukaryotic microbes. Current research is reviewed here on the role of heterotrophic eukaryotic microbes in C biogeochemistry and ecology of estuaries, with particular attention to C budgets, trophodynamics, and the metabolic fate of C in microbial communities. Some attention is given to the importance of these processes in climate change and global warming, especially in relation to sources and sinks of atmospheric CO2, while also documenting the current paucity of research on the role of eukaryotic microbes that contribute to this larger question of C biogeochemistry and the environment. Some recommendations are made for future directions of research and opportunities of applying newer technologies and analytical approaches to a more refined analysis of the role of C in estuarine microbial community processes and the biogeochemical C cycle.  相似文献   

15.
Understanding how humans and other animals behave in response to changes in their environments is vital for predicting population dynamics and the trajectory of coupled social‐ecological systems. Here, we present a novel framework for identifying emergent social behaviours in foragers (including humans engaged in fishing or hunting) in predator–prey contexts based on the exploration difficulty and exploitation potential of a renewable natural resource. A qualitative framework is introduced that predicts when foragers should behave territorially, search collectively, act independently or switch among these states. To validate it, we derived quantitative predictions from two models of different structure: a generic mathematical model, and a lattice‐based evolutionary model emphasising exploitation and exclusion costs. These models independently identified that the exploration difficulty and exploitation potential of the natural resource controls the social behaviour of resource exploiters. Our theoretical predictions were finally compared to a diverse set of empirical cases focusing on fisheries and aquatic organisms across a range of taxa, substantiating the framework's predictions. Understanding social behaviour for given social‐ecological characteristics has important implications, particularly for the design of governance structures and regulations to move exploited systems, such as fisheries, towards sustainability. Our framework provides concrete steps in this direction.  相似文献   

16.
The curvilinear relationship between species richness and habitat area (species–area relationship (SAR)) is a fundamental ecological pattern. The relationship is often viewed from a long‐term perspective across relatively large spatial scales, reflecting a balance between immigration and extinction dynamics. We explored whether predictions of SAR also manifest over short time periods (days) in benthic habitat patches of a dynamic floodplain river where littoral faunal assemblages are continuously assembled and disassembled with changing water levels. We examined the relationship of patch size with faunal abundance (i.e. fish and aquatic invertebrates), taxonomic richness, trophic group richness and overall assemblage composition. Strong taxa–area relationships emerged despite the relatively short experimental time period (21 days); larger patches had more taxa and trophic groups. For the smallest patches, taxonomic richness was especially sensitive to abundance of individuals; abundance of individuals was a less important predictor of taxonomic and trophic group richness for the largest patches. Despite the relatively short time frame for study within this temporally dynamic ecosystem, our findings indicate a strong SAR for fishes and macroinvertebrates inhabiting patchy habitats in the littoral zone of this tropical river.  相似文献   

17.
Food chain systems (FCSs), which begin in agricultural production and end in consumption and waste disposal, play a significant role in China's rising greenhouse gas (GHG) emissions. This article uses scenario analysis to show China's potential trajectories to a low‐carbon FCS. Between 1996 and 2010, the GHG footprint of China's FCSs increased from 1,308 to 1,618 megatonnes of carbon dioxide equivalent (Mt CO2‐eq), although the emissions intensity of all food categories, except for aquatic food, recorded steep declines. We project three scenarios to 2050 based on historical trends and plausible shifts in policies and environmental conditions: reference scenario; technology improvement scenario; and low GHG emissions scenario. The reference scenario is based on existing trends and exhibits a large growth in GHG emissions, increasing from 1,585 Mt CO2‐eq in 2010 to 2,505 Mt CO2‐eq in 2050. In the technology improvement scenario, emissions growth is driven by rising food demand, but that growth will be counterbalanced by gains in agricultural technology, causing GHG emissions to fall to 1,413 Mt CO2‐eq by 2050. Combining technology improvement with the shift to healthier dietary patterns, GHG emissions in the low GHG emissions scenario will decline to 946 Mt CO2‐eq in 2050, a drop of 41.5% compared with the level in 2010. We argue that these are realistic projections and are indeed indicative of China's overall strategy for low‐carbon development. Improving agricultural technology and shifting to a more balanced diet could significantly reduce the GHG footprint of China's FCSs. Furthermore, the transition to a low‐carbon FCS has potential cobenefits for land sustainability and public health.  相似文献   

18.
The reproductive biology of Fopius ceratitivorus Wharton, a recently discovered African parasitoid, was studied in quarantine in Hawaii to facilitate its mass production for biological control of the Mediterranean fruit fly, Ceratitis capitata. Mean longevity of host-deprived and ovipositing females was 17.3 ± 0.9 d and 16.2 ± 0.5 d, respectively. Ovarian maturation peaked at 61.6 mature eggs per female on the fifth day after eclosion and declined thereafter. Mean number of offspring produced per day by mated females was 5.1 ± 0.4, and realized fecundity expressed as total eggs deposited during the female’s life time was 107.8 ± 12.8. Females were more attracted, to and reproduced significantly more, in fruit substrates containing odors of adult flies and eggs rather than fruit substrates artificially inoculated with fly eggs. Our findings suggest that F. ceratitivorus is a promising new parasitoid for biological control of C. capitata in Hawaii.  相似文献   

19.
Approximately 20 000 years ago the last glacial maximum (LGM) radically altered the distributions of many Northern Hemisphere terrestrial organisms. Fewer studies describing the biogeographic responses of marine species to the LGM have been conducted, but existing genetic data from coastal marine species indicate that fewer taxa show clear signatures of post-LGM recolonization. We have assembled a mitochondrial DNA (mtDNA) data set for 14 co-distributed northeastern Pacific rocky-shore species from four phyla by combining new sequences from ten species with previously published sequences from eight species. Nuclear sequences from four species were retrieved from GenBank, plus we gathered new elongation factor 1-α sequences from the barnacle Balanus glandula . Results from demographic analyses of mtDNA for five (36%) species ( Evasterias troschelii, Pisaster ochraceus, Littorina sitkana, L. scutulata, Xiphister mucosus ) were consistent with large population expansions occurring near the LGM, a pattern expected if these species recently recolonized the region. However, seven (50%) species ( Mytilus trossulus, M. californianus, B. glandula, S. cariosus, Patiria miniata, Katharina tunicata , X. atropurpureus ) exhibited histories consistent with long-term stability in effective population size, a pattern indicative of regional persistence during the LGM. Two species of Nucella with significant mtDNA genetic structure showed spatially variable demographic histories. Multilocus analyses for five species were largely consistent with mtDNA: the majority of multilocus interpopulation divergence times significantly exceeded the LGM. Our results indicate that the LGM did not extirpate the majority of species in the northeastern Pacific; instead, regional persistence during the LGM appears a common biogeographic history for rocky-shore organisms in this region.  相似文献   

20.
Being able to utilize many different food resources is probably an important aspect of the success of decapod crustaceans which fill a wide range of various ecological niches worldwide. The phenomenon is facilitated by the complex mouth apparatus found in this group, whose representatives possess six pairs of mouthparts– mandibles, maxillae 1, and maxillae 2 and three maxillipeds, the first three pairs of thoracic appendages which are also specialized to food manipulation. These six pairs are able to perform a number of movements for transporting, aligning, crushing and cutting. Studies into the functional morphology of mouthparts have already been carried out in some decapod species. This study focuses on Lithodes maja, a species of the hitherto understudied king crabs (Lithodidae), chosen on the grounds of their remarkable evolutionary history as ‘derived hermit crabs’. Individuals were filmed while being presented with different kinds of food. To obtain structural information on the individual mouthpart elements as naturally arranged in relation to one another, the shape of the mouthparts was 3D‐reconstructed from micro‐CT scans. These data were complemented by scanning electron microscopy, to analyse the surface structures in detail. There is evidence that the various elements of the mouthparts of L. maja can be sorted into six functional groups: (i) transporting mouthpart elements, (ii) aligning/sorting mouthpart elements, (iii) clutching/holding mouthpart elements, (iv) tearing/cutting/crushing mouthpart elements, (v) current‐generating mouthpart elements and (vi) grooming mouthpart elements. According to our 3D reconstruction, there only seem to be minor differences in morphology and relative position between the mouthparts of L. maja and those of the closely related species, Pagurus bernhardus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号