首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies in modeled microgravity or during orbital space flights have clearly demonstrated that endothelial cell physiology is strongly affected by the reduction of gravity. Nevertheless, the molecular mechanisms by which endothelial cells may sense gravity force remain unclear. We previously hypothesized that endothelial cell caveolae could be a mechanosensing system involved in hypergravity adaptation of human endothelial cells. In this study, we analyzed the effect on the physiology of human umbilical vein endothelial cell monolayers of short exposure to modeled microgravity (24–48h) obtained by clinorotation. For this purpose, we evaluated the levels of compounds, such as nitric oxide and prostacyclin, involved in vascular tone regulation and synthesized starting from caveolae-related enzymes. Furthermore, we examined posttranslational modifications of Caveolin (Cav)-1 induced by simulated microgravity. The results we collected clearly indicated that short microgravity exposure strongly affected endothelial nitrix oxide synthase activity associated with Cav-1 (Tyr 14) phosphorylation, without modifying the angiogenic response of human umbilical vein endothelial cells. We propose here that one of the early molecular mechanisms responsible for gravity sensing of endothelium involves endothelial cell caveolae and Cav-1 phosphorylation.  相似文献   

2.
利用电子断层三维重构技术对猪动脉内皮细胞 (porcine aorta endothelial cell,PAE cell) 胞膜小窝的三维结构进行了初步研究,发现胞膜小窝在细胞膜表面呈不均匀分布并在局部形成聚集,胞膜小窝膜内外表面都由宽度约14~16 nm的条纹状结构所环绕,推测该条纹状结构主要由小窝蛋白和胆固醇构成,狭窄的胞膜小窝颈部区域存在高密度的丝状结构.三维结构显示胞膜小窝与纤维丝体网络(推测为微管网络)相互作用,暗示了细胞内吞可能的运输途径.  相似文献   

3.
Cerebrovascular diseases (CBD) are one of the most dangerous complications of atherosclerosis. The clinical consequences of CBD deeply impact quality of life and the prognosis of patients. Atherosclerosis is the main cause of CBD development. Hypertension, dyslipidemia, diabetes, smoking, obesity, and other risk factors explain the higher CBD incidence in the general population, as they are able to anticipate the clinical expression of atherosclerosis. These risk factors are effectively able to promote endothelial dysfunction which is the premise for the early, clinical expression of atherosclerosis. The mechanisms by which risk factors can influence the occurrence of CBD are different and not fully understood. The inflammatory background of atherosclerosis can explain a great part of it. In particular, the oxidative stress may promote the development of vascular lesions by negatively influencing biochemical cellular processes of the endothelium, thus predisposing the vascular tree to morphological and functional damages. The aim of this narrative review is to evaluate the role of endothelial dysfunction and oxidative stress in CBD development.  相似文献   

4.
Many studies have shown that endothelial dysfunction is associated with a variety of cardiovascular diseases. The endothelium is one of the primary targets of circulating microvesicles. Besides, microRNAs emerge as important regulators of endothelial cell function. As a delivery system of microRNAs, microvesicles play an active and important role in regulating vascular endothelial function. In recent years, some studies have shown that microvesicles containing microRNAs regulate the pathophysiological changes in vascular endothelium, such as cell apoptosis, proliferation, migration and inflammation. These studies have provided some clues for the possible roles of microvesicles and microRNAs in vascular endothelial dysfunction‐associated diseases, and opened the door towards discovering potential novel therapeutic targets. In this review, we provide an overview of the main characteristics of microvesicles and microRNAs, summarizing their potential role and mechanism in endothelial dysfunction, and discussing the clinical application and existing problems of microvesicles for better translational applications.  相似文献   

5.
6.
7.
Considerable evidence suggests that space travelers are immunosuppressed, presumably by microgravity environmental stresses, putting them at risk for adverse effects, such as opportunistic infections, poor wound healing, and cancer. The purpose of this study was to examine the role and mechanisms of nucleotide (NT) supplementation as a countermeasure to obviate immunosuppression during space travel. The in vitro rotary cell culture system, a bioreactor (BIO), was used to simulate the effect of microgravity and to isolate the neuroendocrine effects inherent to in vitro models. The splenocytes from normal mice were cultured in BIO and control tissue culture (TC) flasks with and without phytohemagglutinin (PHA) for mitogen assays. The culture medium was then supplemented with various concentrations of a nucleosides-nucleotides mixture (NS + NT), inosine, and uridine. Cytokines interleukin (IL)-1beta, IL-2, IL-3, tumor necrosis factor-alpha, and interferon (IFN)-gamma were measured from the supernatant by enzyme-linked immunosorbent assay. In the PHA-stimulated cultures the cellular proliferation in the BIO was significantly decreased as compared with the TC flask cells. BIO-cultured cells in the presence of NS + NT maintained mitogen responses similar to the control TC flask cells. The maintenance of the mitogen response in BIO was observed by the supplementation of uridine and not of inosine. These results are in agreement with our earlier results from unit gravity experiments that showed that pyrimidines are more effective in pleiogenic immunoprotection to hosts. Cytokines IL-1beta, IL-2, and IFN-gamma in the BIO supernatants of cells cultured in the presence of NS + NT had a significantly higher response than the control vessel. Thus, supplemental NT, especially pyrimidines, can confer immune protection and enhance cytokine responses during space travel.  相似文献   

8.
叶雨  王柏磊 《蛇志》2012,24(2):99-101
目的观察芒柄花黄素在体外对人脐静脉内皮细胞(HUVEC)增殖及周期的影响。方法采用四甲基偶氮唑蓝(MTT)法检测不同芒柄花黄素对HUVEC增殖的影响,流式细胞术检测细胞周期,Western blot检测cyclin D1蛋白表达水平。结果芒柄花黄素呈剂量依赖性促进HUVEC增殖。且药物作用后,S期细胞比例增加,cyclin D1蛋白表达升高。结论芒柄花黄素对人脐静脉内皮细胞有明显的促进增殖作用,可通过上调cyclin D1蛋白表达增加S期细胞比率。  相似文献   

9.
P-glycoprotein (P-gp), an adenosine triphosphate (ATP)-binding cassette transporter which acts as a drug efflux pump, is highly expressed at the blood-brain barrier (BBB) where it plays an important role in brain protection. Recently, P-gp has been reported to be located in the caveolae of multidrug-resistant cells. In this study, we investigated the localization and the activity of P-gp in the caveolae of endothelial cells of the BBB. We used an in vitro model of the BBB which is formed by co-culture of bovine brain capillary endothelial cells (BBCEC) with astrocytes. Caveolar microdomains isolated from BBCEC are enriched in P-gp, cholesterol, caveolin-1, and caveolin-2. Moreover, P-gp interacts with caveolin-1 and caveolin-2; together, they form a high molecular mass complex. P-gp in isolated caveolae is able to bind its substrates, and the caveolae-disrupting agents filipin III and nystatin decrease P-gp transport activity. In addition, mutations in the caveolin-binding motif present in P-gp reduced the interaction of P-gp with caveolin-1 and increased the transport activity of P-gp. Thus, P-gp expressed at the BBB is mainly localized in caveolae and its activity may be modulated by interaction with caveolin-1.  相似文献   

10.
《Free radical research》2013,47(10):1124-1135
Abstract

Reactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases.  相似文献   

11.
Vascular endothelium plays an important role in regulating vascular homeostasis. Over the past years, it has become clear that endothelial dysfunction is a key event of pathophysiological changes in the initiation and progression of injuries induced by extreme environmental factors. The present review summarizes current understanding of vascular endothelial dysfunction induced by hypoxia, cold and heat, and provides the information for prevention and treatment of environmental exposure injuries.  相似文献   

12.
Summary Bovine aortic endothelial cells retain the ability to undergo histotypic morphogenetic interactions in vitro as evidenced by a) the reversible expression of a sprouting cell phenotype and b) the patterned self-association of these sprouting cells into three-dimensional meshworks and tubule-like structures. These morphogenetic events are inhibited by xylosides in a dose-dependent manner. Two types of beta-xylosides (p-nitrophenyl-beta-d-xylopyranoside and 4-methylumbelliferyl-beta-d-xylopyranoside) and one alpha-xyloside (p-nitrophenyl-alpha-d-xylopyranoside) were tested. Beta-xylosides are well characterized acceptors of glycosaminoglycan chains, whereas alpha-xylosides do not function in this capacity and have been extensively used as negative controls when studying the effects of beta-xylosides. Both alpha-and beta-xylosides inhibited endothelial morphogenetic interactions. This inhibition was slowly reversed during the 6- to 7-d period following removal of the xyloside. Inhibition of morphogenetic interactions by xylosides occurred at concentrations (0.5 to 2.0 mM) that had no demonstrable effects on cell proliferation, migration, or adhesion to 2-D plastic or collagen substrata. The xylosides seemed to inhibit cell spreading on a 3-D environment, they also inhibited the incorporation of [3H]-proline and Na2 35SO4 into the extracellular matrix deposited by the cells, suggesting that the inhibition of morphogenesis may be related to the inhibition of matrix deposition. Endothelial morphogenetic interactions were not inhibited by the extracellular matrix or by the conditioned medium produced by cells cultured in the presence of xylosides.  相似文献   

13.
14.
The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or antiinflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural antithrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (< 60 microm) compared with coarse grain NiTi compacts (< 100 microm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features.  相似文献   

15.
16.
Repair of a vascular wound is mediated by migration and subsequent replication of the endothelial cells that form the inner lining of blood vessels. We have measured the growth response of human umbilical vein endothelial cells (HuE) to two polypeptides that are transiently produced in high concentrations at the site of a wound; the platelet-derived growth factor (PDGF) and the protease thrombin. When 104 HuE cells are seeded as a dense island (2-mm diameter) in the center of a 16-mm tissue culture well in medium containing 20% human serum derived from platelet-poor plasma (PDS), no increase in cell number or colony size is observed. With the addition of 0.5 ng/ml partially purified PDGF, colony size increases and the number of cells after 8 days is 4.8 × 104. When human thrombin (1 μg/ml) is added along with the PDGF, the cell number rises to 9.2 × 104. Thrombin alone stimulates no increase in cell number. Although partially purified PDGF stimulates endothelial cells maintained in PDS as well as those maintained in whole blood serum (WBS), pure PDGF is active only when assayed in medium that contains WBS and is supplemented with thrombin. These results suggest the existence of a second class of platelet-derived factors that enable HuE cells to respond to the mitogenic activity of the purified platelet mitogen and thrombin.  相似文献   

17.
Koh BI  Kang Y 《EMBO reports》2012,13(5):412-422
Several bone marrow-derived cells have been shown to promote tumour growth and progression. These cells can home to the primary tumour and become active components of the tumour microenvironment. Recent studies have also identified bone marrow-derived cells—such as mesenchymal stem cells and regulatory T cells—as contributors to cancer metastasis. The innate versatility of these cells provides diverse functional aid to promote malignancy, ranging from structural support to signal-mediated suppression of the host immune response. Here, we review the role of mesenchymal stem cells and regulatory T cells in cancer metastasis. A better understanding of the bipolar nature of these bone marrow-derived cells in physiological and malignant contexts could pave the way for new therapeutics against metastatic disease.  相似文献   

18.
Endothelial cell lines express markers and are assumed to exhibit other endothelial cell responses. We investigated E-selectin expression from human umbilical vein endothelial cells, the spontaneously transformed ECV304 line and the hybrid line EA.hy926 by flow cytometry and immunofluorescence, mRNA and soluble E-selectin release. In cells exposed to tumour necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta), median (range) percentage of E-selectin-positive HUVECs increased from 1.6(0.9-6. 2)% to 91.4(83.0-96.1)%, (P=0.001) using flow cytometry. In contrast, E-selectin expression by ECV304 and EA.hy926 cell lines was 100-fold lower. E-selectin mRNA was detectable after 2 h, maximal at 6 h in HUVECs and undetectable in EA.hy926 and ECV304 cell lines after exposure to TNF-alpha/IL-1beta. sE-selectin accumulation increased (P=0.004) in HUVECs only. Neutrophil adherence to ECV304 and EA.hy926 cells was poor compared to HUVECs (P=0.004). The cell lines ECV304 and EA.hy926 do not exhibit normal endothelium expression of E-selectin, and may not be appropriate for studies of adhesion.  相似文献   

19.
20.
目的:探讨急性低氧对血管内皮细胞(VEC)和循环血液中内皮细胞(CEC)的影响.方法:用光镜观察急性低氧情况下血中CEC的形态并记数,用组织化学染色和显微分光光度计对血中年轻型CEC及肺小动脉VEC的乳酸脱氢酶(LDH)活性进行定量分析.结果:与低氧前相比,低氧后各组VEC的LDH活性均下降,且随低氧时间延长,LDH活性下降越明显.而低氧前后各组年轻型CEC的LDH活性是一致的,且明显低于各组VEC的LDH活性.低氧前CEC多为衰老型,低氧后CEC数量增多且多为年轻型,随低氧时间延长年轻型CEC增多越明显.结论:CEC的形态和数量的变化可以反映血管的损伤情况;VEC的LDH活性可以反映VEC向CEC转化的进程;年轻型CEC的LDH活性可以反映VEC脱落时的损伤程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号