共查询到4条相似文献,搜索用时 0 毫秒
1.
种子植物的选择性败育是指植株在花粉源、传粉次序、果实在植株上的位置和发育果实中的种子数目等因素或者这些因素综合作用的基础上对发育中的幼果或种子选择性败育的现象。植株可以选择性地败育位于果序顶部或基部的果实以及位于果实基部、中部或柱头端的种子。此现象在被子植物中比较普遍,特别是在豆科、十字花科和紫草科中最为常见。导致植物选择性败育的主要原因主要有资源限制和遗传因子两个方面。植物通过选择性败育部分自交或基因型较差的果实或种子,不仅可以提高母本和后代的适合度,而且还可以提高果实或种子的扩散效率。因此,对选择性败育的研究在深入了解植物的结实结籽格局、探讨其进化式样与机制等方面具有重要意义。该文系统总结了国际上有关植物选择性败育的研究工作,重点介绍了选择性败育发生的式样、导致选择性败育的因素、选择性败育的进化生态意义,以及目前研究选择性败育现象的主要方法,并对该领域今后研究前景进行了展望。 相似文献
2.
R. Alexander Pyron Gabriel C. Costa Michael A. Patten Frank T. Burbrink 《Biological reviews of the Cambridge Philosophical Society》2015,90(4):1248-1262
Phylogenetic niche conservatism (PNC) typically refers to the tendency of closely related species to be more similar to each other in terms of niche than they are to more distant relatives. This has been implicated as a potential driving force in speciation and other species‐richness patterns, such as latitudinal gradients. However, PNC has not been very well defined in most previous studies. Is it a pattern or a process? What are the underlying endogenous (e.g. genetic) and exogenous (e.g. ecological) factors that cause niches to be conserved? What degree of similarity is necessary to qualify as PNC? Is it possible for the evolutionary processes causing niches to be conserved to also result in niche divergence in different habitats? Here, we revisit these questions, codifying a theoretical and operational definition of PNC as a mechanistic evolutionary process resulting from several factors. We frame this both from a macroevolutionary and population‐genetic perspective. We discuss how different axes of physical (e.g. geographic) and environmental (e.g. climatic) heterogeneity interact with the fundamental process of PNC to produce different outcomes of ecological speciation. We also review tests for PNC, and suggest ways that these could be improved or better utilized in future studies. Ultimately, PNC as a process has a well‐defined mechanistic basis in organisms, and future studies investigating ecological speciation would be well served to consider this, and frame hypothesis testing in terms of the processes and expected patterns described herein. The process of PNC may lead to patterns where niches are conserved (more similar than expected), constrained (divergent within a limited subset of available niches), or divergent (less similar than expected), based on degree of phylogenetic relatedness between species. 相似文献
3.
Robert E. Ricklefs Russell E. Shea In-Ho Choi 《Evolution; international journal of organic evolution》1994,48(4):1080-1088
In this study, we investigate whether a tissue-level constraint can explain the general inverse relationship between growth rate and precocity of development in birds. On the whole, altricial (dependent) chicks grow three to four times faster than the less dependent, more able chicks of precocial species of similar adult mass. We suggest that an antagonism between growth and acquisition of mature function in skeletal muscle constrains postnatal growth and development in most species of birds. Altricial species, represented by European starlings in this study, hatch with skeletal muscle having low capacity for generating force but grow rapidly. Conversely, precocial species (northern bobwhite quail and Japanese quail), hatch with relatively mature skeletal muscle, especially in their legs, but grow more slowly. As development proceeds in all species, exponential growth rates decrease as muscles acquire adult levels of function. Among four variables associated with muscle function, exponential growth rate (EGR) was negatively correlated with pyruvate kinase activity (glycolysis), potassium concentration (electrical potential), and dry weight fraction (contractile proteins) in both pectoral and leg muscles but not with citrate synthase activity (aerobic metabolism) in either set of muscles. For pectoral muscle, these variables accounted for 87% of the total variation in EGR in all three species combined despite a twofold difference in growth rates between the starling and quail. EGRs of leg muscle (51% of variation accounted for) were less than predicted by the pectoral-muscle equation in quail during the early part of the postnatal period and in starlings during the late postnatal period. This result would not contradict a growth rate/maturity constraint hypothesis if EGRs were down-regulated for allometric or other considerations. 相似文献
4.
Rienk W. Fokkema Peter Korsten Tim Schmoll Alastair J. Wilson 《Biological reviews of the Cambridge Philosophical Society》2021,96(6):2561-2572
While it is universally recognised that environmental factors can cause phenotypic trait variation via phenotypic plasticity, the extent to which causal processes operate in the reverse direction has received less consideration. In fact individuals are often active agents in determining the environments, and hence the selective regimes, they experience. There are several important mechanisms by which this can occur, including habitat selection and niche construction, that are expected to result in phenotype–environment correlations (i.e. non-random assortment of phenotypes across heterogeneous environments). Here we highlight an additional mechanism – intraspecific competition for preferred environments – that may be widespread, and has implications for phenotypic evolution that are currently underappreciated. Under this mechanism, variation among individuals in traits determining their competitive ability leads to phenotype–environment correlation; more competitive phenotypes are able to acquire better patches. Based on a concise review of the empirical evidence we argue that competition-induced phenotype–environment correlations are likely to be common in natural populations before highlighting the major implications of this for studies of natural selection and microevolution. We focus particularly on two central issues. First, competition-induced phenotype–environment correlation leads to the expectation that positive feedback loops will amplify phenotypic and fitness variation among competing individuals. As a result of being able to acquire a better environment, winners gain more resources and even better phenotypes – at the expense of losers. The distinction between individual quality and environmental quality that is commonly made by researchers in evolutionary ecology thus becomes untenable. Second, if differences among individuals in competitive ability are underpinned by heritable traits, competition results in both genotype–environment correlations and an expectation of indirect genetic effects (IGEs) on resource-dependent life-history traits. Theory tells us that these IGEs will act as (partial) constraints, reducing the amount of genetic variance available to facilitate evolutionary adaptation. Failure to recognise this will lead to systematic overestimation of the adaptive potential of populations. To understand the importance of these issues for ecological and evolutionary processes in natural populations we therefore need to identify and quantify competition-induced phenotype–environment correlations in our study systems. We conclude that both fundamental and applied research will benefit from an improved understanding of when and how social competition causes non-random distribution of phenotypes, and genotypes, across heterogeneous environments. 相似文献