首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fetal cells enter maternal circulation during pregnancy and persist in the woman’s body for decades, achieving a form of physiological microchimerism. These cells were also evidenced in tumors. We investigated the frequency and concentration of fetal microchimerism in the local breast cancer environment. From 19 patients with confirmed breast neoplasia, after breast surgical resection, we collected three fresh specimens from the tumor core, breast tissue at tumor periphery, and adjacent normal breast tissue. The presence of male DNA was analyzed with a quantitative PCR assay for the sex determining region gene (SRY) gene. In the group of women who had given birth to at least one son, we detected fetal microchimerism in 100% of samples from tumors and their periphery and in 64% (9 of 14) of those from normal breast tissue. The tissues from the tumor and its periphery carry a significantly increased number of SRY copies compared to its neighboring common breast tissue (p = 0.005). The median of the normalized SRY-signal was about 77 (range, 3.2–21467) and 14-fold (range, 1.3–2690) greater in the tumor and respectively in the periphery than in the normal breast tissue. In addition, the relative expression of the SRY gene had a median 5.5 times larger in the tumor than in its periphery (range, 1.1–389.4). We found a heterogeneous distribution of fetal microchimerism in breast cancer environment. In women with sons, breast neoplasia harbors male cells at significantly higher levels than in peripheral and normal breast tissue.  相似文献   

3.
Fetal microchimerism has been suggested to play contradictory roles in women’s health, with factors including age of the recipient, time elapsed since microchimerism occurred, and microchimeric cell type modulating disease. Both beneficial and harmful effects have been identified in wound healing and tissue regeneration, immune mediated disease, and cancer. This area of research is relatively new, and hindered by the time course from occurrence of fetal microchimerism to the multi-factorial development of disease. Dogs represent an excellent model for study of fetal microchimerism, as they share our environment, have a naturally condensed lifespan, and spontaneously develop immune-mediated diseases and cancers similar to their human counterparts. However, fetal microchimerism has not been described in dogs. These experiments sought preliminary evidence that dogs develop fetal microchimerism following pregnancy. We hypothesized that Y chromosomal DNA would be detected in the peripheral blood mononuclear cells of female dogs collected within two months of parturition. We further hypothesized that Y chromosomal DNA would be detected in banked whole blood DNA samples from parous female Golden Retrievers with at least one male puppy in a prior litter. Amplification of DNA extracted from five female Golden Retrievers that had whelped within the two months prior to collection revealed strong positive bands for the Y chromosome. Of banked, parous samples, 36% yielded positive bands for the Y chromosome. This is the first report of persistent Y chromosomal DNA in post-partum female dogs and these results suggest that fetal microchimerism occurs in the canine species. Evaluation of the contributions of fetal microchimeric cells to disease processes in dogs as a model for human disease is warranted.  相似文献   

4.
In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus). Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n = 26), or women who had Alzheimer’s disease (n = 33). We report that 63% of the females (37 of 59) tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p = 0.03) and concentration (p = 0.06) of male microchimerism in the brains of women with Alzheimer’s disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.  相似文献   

5.
The effect of predation on native fish by introduced species in the San Francisco Estuary–Delta (SFE) has not been thoroughly studied despite its potential to impact species abundances. Species‐specific quantitative PCR (qPCR) is an accurate method for identifying species from exogenous DNA samples. Quantitative PCR assays can be used for detecting prey in gut contents or faeces, discriminating between cryptic species, or detecting rare aquatic species. We designed ten TaqMan qPCR assays for fish species from the SFE watershed most likely to be affected by non‐native piscivores. The assays designed are highly specific, producing no signal from co‐occurring or related species, and sensitive, with a limit of detection between 3.2 and 0.013 pg/μL of target DNA. These assays will be used in conjunction with a high‐throughput qPCR platform to compare predation rates between native and non‐native piscivores and assess the impacts of predation in the system.  相似文献   

6.
The invasion of non‐native species that are closely related to native species can lead to competitive elimination of the native species and/or genomic extinction through hybridization. Such invasions often become serious before they are detected, posing unprecedented threats to biodiversity. A Japanese native strain of common carp (Cyprinus carpio) has become endangered owing to the invasion of non‐native strains introduced from the Eurasian continent. Here, we propose a rapid environmental DNA‐based approach to quantitatively monitor the invasion of non‐native genotypes. Using this system, we developed a method to quantify the relative proportion of native and non‐native DNA based on a single‐nucleotide polymorphism using cycling probe technology in real‐time PCR. The efficiency of this method was confirmed in aquarium experiments, where the quantified proportion of native and non‐native DNA in the water was well correlated to the biomass ratio of native and non‐native genotypes. This method provided quantitative estimates for the proportion of native and non‐native DNA in natural rivers and reservoirs, which allowed us to estimate the degree of invasion of non‐native genotypes without catching and analysing individual fish. Our approach would dramatically facilitate the process of quantitatively monitoring the invasion of non‐native conspecifics in aquatic ecosystems, thus revealing a promising method for risk assessment and management in biodiversity conservation.  相似文献   

7.
8.
Fetal male DNA can be identified in maternal blood by polymerase chain reaction (PCR) amplification of Y-specific sequences. This technology has not reached a satisfactory accuracy and reproducibility in fetal gender determination because of the very low concentration of fetal cells. Our purpose was to evaluate the possibility of improving the reliability of this test by setting up a repeated amplification system. We amplified, by nested PCR of the Y-specific sequence DYS14, 137 DNA samples extracted from maternal peripheral blood (93 from male-bearing and 44 from female-bearing pregnancies ranging from the 6th to the 36th gestational week). Each maternal DNA sample was tested doubly, in two different PCR sessions, with a total of four amplifications. We obtained discordant results in the four amplifications in 82/137 (60%) samples. The best interpretation of these discordant results was obtained by applying a positivity cutoff of at least two positive amplifications for considering a DNA sample as belonging to a male-bearing pregnancy. We obtained a sensitivity of 83%, a specificity of 93%, a positive predictive value of 96% and a negative predictive value of 72% in fetal male gender diagnosis. By applying this quadruple testing system, we significantly improved PCR accuracy and predictive values compared with single and double testing of the same samples. We conclude that, for future investigations of fetal DNA retrieved from maternal blood, the application of a quadruple testing system is better than the single PCR test. Received: 18 August 1997 / Accepted: 12 January 1998  相似文献   

9.
Fetal microchimerism indicates a mixture of cells of maternal and fetal origin seen in maternal tissues during and after pregnancy. Controversy exists about whether persistent fetal microchimerism is related with some autoimmune disorders occurring during and after pregnancy. In the current experiment, an animal model in which EGFP positive cells were taken as fetal-origin cells was designed to detect the fetal microchimerism in various maternal organs. Ethanol drinking and gentamicin injection were adopted to induce liver and kidney injury simultaneously. EGFP positive cells were engrafted not only in the maternal circulation and bone marrow, but also in the liver and kidney as hepatocytes and tubular cells, respectively. These results indicate that fetal cells are engrafted to maternal hematopoietic system without apparent injury and they also contribute to the repairing process of maternal liver and kidney.  相似文献   

10.
Morin N  Metrakos P  Berman K  Shen Y  Lipman ML 《BioTechniques》2004,37(1):74-6, 78, 80-1
The persistence of donor cells in recipient circulation and peripheral tissues post-transplantation has been demonstrated in solid organ allotransplantation and xenotransplantation models. Although this state of microchimerism has been postulated as the basis for graft acceptance, chimerism has not been directly linked to the maintenance of peripheral tolerance or prevention of rejection. Studies have demonstrated that the qualitative presence or absence of donor microchimerism bears no association with graft acceptance. Our preliminary work suggests that there is a threshold chimerism necessary for the induction of donor-specific hyporesponsiveness. Because the kinetics of donor cell accumulation and distribution in allograft recipients are largely unknown, quantitative analyses are needed to evaluate chimerism's significance to donor-specific tolerance. We developed a quantitative, competitive PCR assay to precisely measure the amount of chimerism in male to female transplant pairs by targeting the sex-determining region of the Y chromosome (SRY gene). Traditionally, this technique requires that serial known amounts of an SRY-specific competitive template (CT) be coamplified with a constant amount of sample DNA to determine the equivalence point of the relative band intensities of the PCR products. However running a panel of PCRs with CT amounts above and below the equivalence point to generate a standard curve for ever' sample is laborious. Here we describe the generation of a single standard curve that permits the rapid and reliable quantification of microchimerism after coamplification of sample DNA with a single amount of CT.  相似文献   

11.
12.
Nucleases are important enzymes that cleave nucleic acids and play critical roles in DNA repair, immune defense and potentially in cancer invasion. However, their spatial dynamics at subcellular level is much less studied. Here, we developed a surface‐tethered nuclease sensor (SNS) which directly converts membrane‐bound nuclease (MN) activity to fluorescent signal, therefore, mapping MN activity on cell adhesion sites with high resolution and sensitivity. With SNS, we studied MN activity on the ventral membrane of cancer cells, where MN activity initially occurs in punctate regions and advances in a coral‐shaped pattern. In six tested cell‐lines, the MN activity levels in cancer cells are significantly higher than those in non‐cancer cells. We then tested SNS as a sensitive approach to detect cancer cells at single cell level. Single breast cancer cells were successfully detected from thousands of adherent non‐cancer cells and from millions of non‐adherent blood cells.   相似文献   

13.
Peripheral blood microchimerism after pregnancy or solid organ transplantation has been widely studied, but a consensus on its detection has not yet been adopted. The objective of this study was to establish a panel of reproducible molecular polymerase chain reaction (PCR)-based methods for detection and quantification of foreign cells in an individual. We analyzed length polymorphisms generated by short tandem repeat (STR) and variable number tandem repeat (VNTR) markers. Human leukocyte antigen (HLA)-A and -B polymorphisms were detected by reference strand conformation analysis (RSCA). Class II polymorphisms on HLA-DRB1 locus were analyzed both by classical PCR-sequence-specific primers (SSP) and by quantitative PCR (Q-PCR). Also, sex-determining region-y gene (SRY) gene allowed specific male donor discrimination and quantification by Q-PCR in female recipients. Binomial statistical distribution analysis was used for each molecular technique to determine the number of PCR replicates of each sample. This analysis allowed the detection of the lowest detectable microchimerism level, when present. We could detect microchimerism in more than 96% and more than 86% of cases at levels as low as 1:10(5) and 1:10(6) donor per recipient cells (DPRC), respectively, using Q-PCR for SRY or for nonshared HLA-DRB1 alleles. These techniques allowed as low as 1 genome-equivalent cell detection. Lower levels (nanochimerism) could be detected but not quantified because of technique limitations. However, classical PCR methods allowed detection down to 1:10(4) DPRC for HLA-DRB1 PCR-SSP. The clinical application of these techniques in solid organ transplanted recipients showed microchimerism levels ranging from 1:10(4) to 1:10(6) DPRC after kidney or heart transplantation, and 1 log higher (1:10(3) to 1:10(6) DPRC) after liver transplantation. In conclusion, the standardization of molecular microchimerism detection techniques will allow for comparable interpretation of results in microchimerism detection for diagnostic or research studies.  相似文献   

14.
B. Pang, D. Matthias, C.W. Ong, A.N. Dhewar, S. Gupta, G.L. Lim, M.‐E. Nga, J.E. Seet, A. Qasim, T.‐M. Chin, R. Soo, R. Soong and M. Salto‐Tellez The positive impact of cytological specimens for EGFR mutation testing in non‐small cell lung cancer: a single South East Asian laboratory’s analysis of 670 cases Objectives: To compare the rejection rates of non‐small cell lung cancer (NSCLC) samples obtained by differing sampling methods for testing by Sanger sequencing for epidermal growth factor receptor (EGFR) mutations. To assess the association between unsatisfactory outcomes and the quantity of DNA extracted from cytological versus histological samples. Methods: Six hundred and seventy NSCLC samples referred to our centre from 2008 to 2010 were reviewed as a consequence of sample rejection, presence of EGFR mutations, cytological versus histological sampling methods, DNA quantity and the unsatisfactory genotyping rate. Results: Eighty samples were rejected for testing in similar proportions of histological and cytological samples (11.9% versus 10.9%) usually (n = 75) because the amount of cellular material was judged insufficient in small biopsies or cytology samples. The remaining 590 samples on which EGFR testing was attempted yielded 51 (8.6%) unsatisfactory test outcomes caused by failure of the polymerase chain reaction (PCR) (n = 47 cases), uninterpretable Sanger chromatograms (n = 3 cases) and insufficient DNA extracted for PCR (n = 1 case). The difference in rates of unsatisfactory outcomes between cytological samples (seven of 147 samples or 4.7%) versus tissue samples (44 of 443 samples or 9.9%) was clinically relevant but not statistically significant (Mann–Whitney test; P < 0.081). There was no association between the concentration of DNA extracted and the likelihood of an unsatisfactory analysis; which was similar in all types of sections (large and small) while 0% of 37 cytology slides were unsatisfactory. Conclusions: Utilizing cytology samples for EGFR testing avoids unnecessary patient re‐biopsing and yields a clinically superior satisfactory rate to the overall satisfactory rate of tissue biopsies of NSCLC. The quality rather than quantity of DNA extracted may be a more important determinant of a satisfactory result.  相似文献   

15.
改良的PEP方法在无创性产前基因诊断中的应用   总被引:7,自引:2,他引:5  
王敏  金春莲  林长坤  王雁  孙开来  武盈玉 《遗传》2001,23(3):195-198
应用显微操作技术获取孕妇外周血中的单个有核红细胞,改良的PEP方法扩增单个有核红细胞的全基因组DNA;在此基础上,应用荧光标记聚合酶链反应扩增9个微卫星片段,进行基因型分析判定单个有核红细胞来源。综合性别和DMD基因内的数个STR位点连锁分析进行DMD基因诊断,应用PCR-STR连锁分析进行PKU基因诊断。结果显示,对10例DMD高危胎儿中的6例成功地进行了无创性产前基因诊断。同时对1例PKU也成功地进行了无创性产前基因诊断。改良的PEP方法扩增单个细胞的全基因组可以满足基因诊断的要求,是无创性产前基因诊断中一种极有价值的全基因组扩增的方法。 Abstract:We investigated the feasibility of using improved primer extension preamplificat ion method to diagnose DMD and PKU. The fetal nucleated red blood cells from the peripheral blood of pregnant women were detected and individually retrieved into glass capillary pipettes using a micromanipulator under microscopic observation. The whole genome of a single cell was amplified by improved primer extension preamplification (PEP).Genotypes were analyzed by amplifying the 9 STR fragments using fluorescence?PCR technique and NRBC's(nucleated red blood cell) origin w as determined.We diagnosed DMD prenatally using sex determination and linkage an alysis of several STR sites of dystrophin,and we diagnosed PKU prenatally using PCR?STR linkage analysis.6 of 10 potential DMD patients were diagnosed,includin g 1 male fetal patient,1 potential PKU patient was also diagnosed.The improved P EP method is a very valuable method of amplifying the whole genome of single cel ls,and the products of amplification are enough to the requirements of DNA in no n-invasive prenatal diagnosis.  相似文献   

16.
Polymerase chain reaction (PCR)‐based methods are increasingly used to elucidate tick biology. However, DNA extracted from ticks may provide poor PCR templates as a result of PCR inhibition by mammalian blood or contamination by male DNA (in fertilized females). In this study, the effects of removing the bloodmeal and reproductive organs were evaluated through paired DNA extractions in engorged and non‐engorged Dermacentor variabilis (Say) (Acari: Ixodidae), prior to PCR amplification at 12 microsatellites. The first extraction utilized only mouthparts and legs (‘mouthpart’ samples) and the second utilized tick bodies (‘body’ samples). The results indicated that contamination by male DNA was an unlikely source of genotyping error in mouthpart and body samples. Engorged females showed higher levels of PCR inhibition in body vs. mouthpart samples, with a 29% decrease in amplification success rates per PCR and a 10‐fold increase in levels of missing genotypes in body samples. By contrast, non‐engorged females showed little difference in amplification success rates or numbers of missing genotypes in body vs. mouthpart samples. We discuss analytical concerns related to this systematic bias in PCR problems and recommend the removal of the bloodmeal and reproductive organs prior to DNA extraction, especially in engorged female ticks.  相似文献   

17.
Maternal starvation inhibits fetal brain development during late gestation in the rat. To determine whether intrinsic or extrinsic factors might be the principal contributor to altered growth, brain cells from 20 day fetuses were cultured in a 96 well plate with MEM and 10% adult rat serum. Tissue growth was monitored by spectrophotometric measurement of the mitochondrial reduction of a chromagen 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT). After 1, 4 or 6 days incubation, MTT activity in non confluent cultures was shown to be directly related to tissue mass. When fetal brain cell cultures were incubated with 1% and 10% concentrations of adult rat serum, an 11-fold increase in MTT activity paralleled a 15-fold increase in tritiated thymidine incorporation. The impact of maternal starvation on fetal brain cell growth was examined by measuring MTT activity in fetal brain cells from fed and starved mothers. When cultures were incubated for 6 days with graded concentrations of fed adult serum (1.25–10%), the MTT response was slightly but consistently lower in cells from starved when compared with cells from fed mothers. By contrast, a marked difference in MTT activity which was paralleled by a lower DNA content became apparent when fetal rat brain cells were incubated with starved adult serum. Fetal serum and adult male serum were found to support growth equally well, while incubation of fetal brain cells with maternal sera resulted in lower MIT values than with the corresponding fetal sera. When cells were incubated with fetal sera pooled from starved mothers, MTT activity was decreased by 42 to 45%. A relative decrease in MTT activity was also apparent when cells were exposed to sera from starved mothers. Graded concentrations of starved fetal serum (2.5–10%) produced an increase in MTT activity that was consistently lower than similar concentrations of fed fetal serum, a finding suggesting a decrease in growth factors. Mixing fasted with fed serum did not correct the diminished growth, and indicated that an inhibitor might also be functioning to restrict growth. These findings therefore suggest that the principal determinants of diminished fetal brain growth during maternal starvation are not only intrinsic to the cells but are importantly related to the altered extrinsic factors in the fetal circulation.  相似文献   

18.
Pluripotent stem cells are hugely attractive in the tissue engineering research field as they can self‐renew and be selectively differentiated into various cell types. For stem cell and tissue engineering research it is important to develop new, biocompatible scaffold materials and graphene has emerged as a promising material in this area as it does not compromise cell proliferation and accelerates specific cell differentiation. Previous studies have shown a non‐invasive optical technique for mouse embryonic stem (mES) cell differentiation and transfection using femtosecond (fs) laser pulses. To investigate cellular responses to the influence of graphene and laser irradiation, here we present for the first time a study of mES cell fs laser transfection on graphene coated substrates. First we studied the impact of graphene on Chinese Hamster Ovary (CHO‐K1) cell viability and cell cytotoxicity in the absence of laser exposure. These were tested via evaluating the mitochondrial activity through adenosine triphosphates (ATP) luminescence and breakages on the cell plasma membrane assessed using cytosolic lactate dehydrogenase (LDH) screening. Secondly, the effects of fs laser irradiation on cell viability and cytotoxicity at 1064 and 532 nm for cells plated and grown on graphene and pure glass were assessed. Finally, optical transfection of CHO‐K1 and mES cells was performed on graphene coated versus plain glass substrates. Our results show graphene stimulated cell viability whilst triggering a mild release of intracellular LDH. We also observed that compared to pure glass substrates; laser irradiation at 1064 nm on graphene plates was less cytotoxic. Finally, in mES cells efficient optical transfection at 1064 (82%) and 532 (25%) nm was obtained due to the presence of a graphene support as compared to pristine glass. Here we hypothesize an up‐regulation of cell adhesion promoting peptides or laminin‐related receptors of the extracellular matrix (ECM) in cell samples grown and irradiated on graphene substrates. By bringing together advances in optics and nanomaterial sciences we demonstrate pathways for enhancement of pluripotent stem cell biology. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Presence of fetal DNA in maternal plasma decades after pregnancy   总被引:8,自引:0,他引:8  
Cells of fetal origin and cell-free fetal DNA can be detected in the maternal circulation during pregnancy, and it has recently been shown that fetal cells can persist long after delivery. Given the various biological and clinical implications of this fact, we tested the hypothesis that cell-free fetal DNA can be present in maternal plasma decades after pregnancy. We extracted DNA from plasma samples and nucleated blood cells of 160 healthy women with male offspring at different time intervals after delivery (range 1-60 years). All of the samples were tested by means of a real-time quantitative PCR assay for a specific Y chromosome sequence (the SRY gene). Y chromosome-specific DNA was detected in 16 peripheral blood cell samples (10%) and 35 plasma samples (22%). The women with male sequences in the cell fraction had significantly greater total parity ( P=0.018). The proportion of women with detectable Y sequences in the plasma or cell samples was not related to the time since delivery. The fetal DNA concentrations in the genomic material extracted from plasma samples were significantly higher than those extracted from the Y-positive cell samples (149+/-140 vs 20+/-13 genome-equivalents/ml; P<0.001). There was no relationship between the concentration of fetal DNA and the time since delivery. Not only fetal cells, but also fragments of fetal DNA can be present in the maternal circulation indefinitely after pregnancy. This finding has practical implications for non-invasive prenatal diagnoses based on maternal blood, and may be considered for possible pathophysiological correlations.  相似文献   

20.
A simplified technique was developed for DNA sequence-based diagnosis of harmful dinoflagellate species. This protocol integrates procedures for DNA extraction and polymerase chain reaction (PCR) amplification into a single tube. DNA sequencing reactions were performed directly, using unpurified PCR products as the DNA template for subsequent sequencing reactions. PCR reactions using DNA extracted from single cells of Cocodinium polykrikoides and Alexandrium catenella successfully amplified the target ribosomal DNA regions. DNA sequencing of the unpurified PCR products showed that DNA sequences corresponded to the expected locus of ribosomal DNA regions of both A. catenella and C. polykrikoides (each zero genetic distance and 100% sequence similarity). Using the protocol described in this article, there was little DNA loss during the purification step, and the technique was found to be rapid and inexpensive. This protocol clearly resolves the taxonomic ambiguities of closely related algal species (such as Alexandrium and Cochlodinium), and it constitutes a significant breakthrough for the molecular analysis of nonculturable dinoflagellate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号