首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heterokaryon incompatibility system in Aspergillus nidulans has been investigated by parasexual methods. The use of complementary auxotrophs with a repeated serial transfer method or with a protoplast fusion technique has enabled heterokaryons and diploid strains to be recovered from heterokaryon incompatible combinations of strains. The effects of allelic interaction at heterokaryon incompatibility (het) loci on the morphologies of the heterokaryon and diploid colonies isolated are described. Parasexual analyses conducted among strains belonging to the heterokaryon compatibility groups, h-cGl and h-cB, and the two recombinant compatibility classes, have located the hetA and hetB genes to linkage groups V and VI respectively.  相似文献   

2.
Eight isolates of A. flavus and A. parasiticus were screened for the presence of virus-like-particles (VLP). Qnly A.flavus strain NRRL 5565 contained detectable VLP. Spore color and auxotrophic mutants were induced in this strain and evidence for the parasexual cycle was obtained. Attempts to form heterokaryons between 3 auxotrophs of the VLP-containing strain and 9 auxotrophs from two different aflatoxigenic strains were unsuccessful.  相似文献   

3.
Heterokaryosis was recently reported in the chestnut blight fungus, Cryphonectria parasitica, in which individuals contain nuclei that are isogenic except at the mating-type locus (MAT). MAT heterokaryons were found in several natural populations, including a putatively clonal population in West Salem, Wisconsin, providing an opportunity to address the question of how heterokaryons arise. We represented relationships among RFLP fingerprint haplotypes as networks in which loop formation is considered evidence of recombination. From 1990 to 1995, this population was clonal, as indicated by a simple haplotype network without loops, and the correlation of vegetative compatibility (vc) types and mating types with haplotype lineages. By 1999, we observed loops in the haplotype network involving isolates of two vc types (WS-2 and WS-3). Isolates with haplotypes in the loops were either MAT heterokaryons, carried the opposite mating type from other isolates of the same vc type, and/or had two alleles at two or more codominant SCAR (sequence-characterized amplified region) loci. Segregation of markers and recombination were evident among single-spore isolates from one heterokaryon; these single-spore isolates had novel fingerprint haplotypes, also within the loops. In contrast, vc type WS-1, which comprises 85% of the population, was represented by a simple network with no loops, indicating a clonal lineage varying only by mutation. Almost all isolates of WS-1 had the same mating type; the exceptions were five isolates that were MAT heterokaryons. These results are consistent with the hypothesis that heterokaryons formed between vegetatively incompatible individuals, and recombination occurred by a parasexual process.  相似文献   

4.
An intensive parasexual genetics program in which industrial strains of Penicillium chrysogenum were used culminated in the isolation of a number of heterozygous diploid strains. The diploid clones were selected from heterokaryons formed from matings between mutant strains having complementary biochemical and conidial color markers. Several diploid cultures were compared with their haploid wild-type parents and other distantly related production strains on the basis of a variety of cultural and physiological criteria. The diploid strains characteristically produced conidia of larger volume and higher deoxyribonucleic acid content. Some were vigorous with respect to growth rate and onset and degree of conidiation. One diploid strain (WC-9) had a 46% greater oxygen uptake rate and oxidized glucose at a 57% greater rate than its haploid parent (M-2). It also produced 33% higher concentrations of β-galactosidase, 66% more alkaline protease, and 53% more glucose oxidase than the M-2 haploid parent. The selection of rare stable diploid mold cultures through the use of parasexual genetics offers a unique approach to the direct selection of mutants with potential for increased enzyme formation.  相似文献   

5.
《Experimental mycology》1995,19(1):48-60
Rizwana, R., and Powell, W. A. 1995. Ultraviolet light-induced heterokaryon formation and parasexuality in Cryphonectria parasitica. Experimental Mycology 19, 48-60. The effect of ultraviolet-light on heterokaryon formation, vegetative compatibility, and parasexuality in Cryphonectria parasitica was examined. Heterokaryons of complementary auxotrophic strains could not be made by hyphal anastomosis if the strains belonged to different vegetative compatibility groups. Protoplast fusions overcame incompatibility of strains differing in the alleles of a single but not multiple vegetative incompatibility loci. Fusion of protoplasts from ultraviolet light-treated complementary auxotrophs increased heterokaryon formation by 104 to 105 using the strains differing in alleles of a single vegetative incompatibility gene but had no detectable effect on strains differing in multiple vegetative incompatibility genes. Vegetative compatibility tests of single conidial isolates resolved from these heterokaryons suggest that diploids had formed followed by the loss of one of the VIC alleles. Presence of both auxotrophic markers in some of these single conidial isolates confirms the occurrence of a parasexual cycle. These experiments demonstrate that ultraviolet-light can enhance heterokaryon formation and parasexuality in C. parasitica .  相似文献   

6.
The opportunistic pathogen Candida albicans has a large repertoire of mechanisms to generate genetic and phenotypic diversity despite the lack of meiosis in its life cycle. Its parasexual cycle enables shifts in ploidy, which in turn facilitate recombination, aneuploidy, and homozygosis of whole chromosomes to fuel rapid adaptation. Here we show that the tetraploid state potentiates ploidy variation and drives population heterogeneity. In tetraploids, the rate of losing a single heterozygous marker [loss of heterozygosity (LOH)] is elevated ∼30-fold higher than the rate in diploid cells. Furthermore, isolates recovered after selection for LOH of one, two, or three markers were highly aneuploid, with a broad range of karyotypes including strains with a combination of di-, tri-, and tetrasomic chromosomes. We followed the ploidy trajectories for these tetraploid- and aneuploid-derived isolates, using a combination of flow cytometry and double-digestion restriction-site-associated DNA analyzed with next-generation sequencing. Isolates derived from either tetraploid or aneuploid isolates predominately resolved to a stable euploid state. The majority of isolates reduced to the conventional diploid state; however, stable triploid and tetraploid states were observed in ∼30% of the isolates. Notably, aneuploid isolates were more transient than tetraploid isolates, resolving to a euploid state within a few passages. Furthermore, the likelihood that a particular isolate will resolve to the same ploidy state in replicate evolution experiments is only ∼50%, supporting the idea that the chromosome loss process of the parasexual cycle is random and does not follow trajectories involving specific combinations of chromosomes. Together, our results indicate that tetraploid progenitors can produce populations of progeny cells with a high degree of genomic diversity, from altered ploidy to homozygosis, providing an excellent source of genetic variation upon which selection can act.  相似文献   

7.
Double auxotrophic and morphological mutants of Trichoderma pseudokoningii Rifai were fused by anastomosis and by protoplast fusion. The recovery of recombinants from heterokaryons on different selective media and from heterokaryotic colonies indicated the occurrence of parasexual events. Prototrophic colonies growing on minimal medium produced binucleate spores, green in colour, revealing a non-autonomous system for conidial pigmentation. Recombinants were obtained from these dikaryotic colonies suggesting the occurrence of a highly unstable diploid phase.  相似文献   

8.
Protoplasts obtained from mycelia of a single auxotrophic mutant of Trichoderma reesei QM 9414 were fused with those of T. reesei QM 9136 in the presence of 0.5 M glycine-NaOH buffer, pH 7.5, containing 0.05 M CaCl2 · 2H2O and 35% polyethylene glycol 4,000. The regeneration frequency of these protoplasts was 8.9–12.0% on a solid culture medium with soft agar overlay. The fused protoplasts successfully formed heterokaryons showing 3.33% of the fusion frequency. A heterozygous diploid was obtained from conidia of the heterokaryon by treatment with 0.1% d-camphor. The diploid showed a 1.9 fold DNA content per conidial nucleus compared to T. reesei QM 9414. The frequency of diploid formation was about 1.9 × 10−4 per conidium. Cellulase activities, such as filter paper degrading and CM-cellulose and Avicel saccharifying activities, and the xylanase activity of the diploid showed intermediate values between those of T. reesei QM 9414 and T. reesei QM 9136. However, the β-glucosidase, β-1,3-glucanase and chitinase activities of the diploid increased to levels equal to on above those of T. reesei QM 9414 and T. reesei QM 9136. The existence of a parasexual cycle of T. reesei and the possibility of its application to enhanced enzyme productivity were confirmed using the protoplast fusion technique.  相似文献   

9.
The haploid microbial eukaryote Aspergillus nidulans is a powerful genetic system, which allows analysis of a broad range of biological phenomena. In addition to conventional analysis of meiotic progeny in a single generation, parasexual analysis affords a rapid and convenient method for genetic analysis. We describe the construction of A. nidulans heterokaryons and diploids for use in genetic analysis to determine dominance and conduct complementation tests. We also describe the rapid mapping of mutations to chromosomes by haploidization of diploids carrying marked chromosomes. Balanced heterokaryons may be established within 10 days and diploids may be constructed in 2-3 weeks. Dominance tests and complementation tests using balanced heterokaryons or diploids may be completed in 2-3 days. Haploidization analysis of heterozygous diploids can be achieved within 10 days. These protocols should be adaptable for use in related Aspergilli and Penicillia, which lack a known meiotic cycle.  相似文献   

10.
Seventy‐five isolates of Fusarium oxysporum f.sp. cepae, the causal agent of basal plate rot on onion, were obtained from seven provinces of Turkey. The isolates were characterized by vegetative compatibility grouping (VCGs) and restriction fragment length polymorphism (RFLP) analysis of the nuclear ribosomal DNA intergenic spacer region (IGS). Forty‐eight vegetative compatibility groups were found, each containing a single isolate. Only one isolate formed strong heterokaryons with the reference isolates of VCG 0423. Five isolates were heterokaryon self‐incompatible. Restriction fragment analysis with six different enzymes revealed 13 IGS types among 75 F. oxysporum isolates from Turkey as well as 16 reference isolates from Colorado, USA. The majority of single‐member VCGs produced identical RFLP banding patterns with minor deviations, considerably different from those of the reference VCG isolates. These results suggested that isolates of F. oxysporum f.sp. cepae in Turkey derived from distinct clonal lineages and mutations at one or more vegetative compatibility loci restrict heterokaryon formation.  相似文献   

11.
Candida albicans is a diploid yeast that can undergo mating and a parasexual cycle, but is apparently unable to undergo meiosis. Characterization of the population structure of C. albicans has shown that reproduction is largely clonal and that mating, if it occurs, is rare or limited to genetically related isolates. Because molecular typing has delineated distinct clades in C. albicans, we have tested whether recombination was common within clades, but rare between clades. Two hundred and three C. albicans isolates have been subjected to multilocus sequence typing (MLST) and the haplotypes at heterozygous MLST genotypes characterized. The C. albicans isolates were distributed among nine clades, of which five corresponded to those previously identified by Ca3 fingerprinting. In each of these clades with more than 10 isolates, polymorphic nucleotide positions located on between 3 and 4 of the six loci were in Hardy-Weinberg disequilibrium. Moreover, each of these polymorphic sites contained excess heterozygotes. This was confirmed by an expanded analysis performed on a recently published MLST dataset for 1044 isolates. On average, 66% of polymorphic positions in the individual clades were in significant excess of heterozygotes over the five clades. These data indicate that mating within clades as well as self-fertilization are both limited and that C. albicans clades do not represent a collection of cryptic species. The study of haplotypes at heterozygous loci performed on our dataset indicates that loss of heterozygosity events due to mitotic recombination is moderately common in natural populations of C. albicans. The maintenance of substantial heterozygosity despite relatively frequent loss of heterozygosity could result from a selective advantage conferred by heterozygosity.  相似文献   

12.
Candida albicans is a diploid yeast that can undergo mating and a parasexual cycle, but is apparently unable to undergo meiosis. Characterization of the population structure of C. albicans has shown that reproduction is largely clonal and that mating, if it occurs, is rare or limited to genetically related isolates. Because molecular typing has delineated distinct clades in C. albicans, we have tested whether recombination was common within clades, but rare between clades. Two hundred and three C. albicans isolates have been subjected to multilocus sequence typing (MLST) and the haplotypes at heterozygous MLST genotypes characterized. The C. albicans isolates were distributed among nine clades, of which five corresponded to those previously identified by Ca3 fingerprinting. In each of these clades with more than 10 isolates, polymorphic nucleotide positions located on between 3 and 4 of the six loci were in Hardy-Weinberg disequilibrium. Moreover, each of these polymorphic sites contained excess heterozygotes. This was confirmed by an expanded analysis performed on a recently published MLST dataset for 1044 isolates. On average, 66% of polymorphic positions in the individual clades were in significant excess of heterozygotes over the five clades. These data indicate that mating within clades as well as self-fertilization are both limited and that C. albicans clades do not represent a collection of cryptic species. The study of haplotypes at heterozygous loci performed on our dataset indicates that loss of heterozygosity events due to mitotic recombination is moderately common in natural populations of C. albicans. The maintenance of substantial heterozygosity despite relatively frequent loss of heterozygosity could result from a selective advantage conferred by heterozygosity.  相似文献   

13.
Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and α strains. The product of mating is a tetraploid a/α cell that must undergo a reductional division to return to the diploid state. Despite the presence of several “meiosis-specific” genes in the C. albicans genome, a meiotic program has not been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss, often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes. In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes, including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11 prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle.  相似文献   

14.
Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and α strains. The product of mating is a tetraploid a/α cell that must undergo a reductional division to return to the diploid state. Despite the presence of several “meiosis-specific” genes in the C. albicans genome, a meiotic program has not been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss, often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes. In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes, including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11 prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle.  相似文献   

15.
Wild-type isolates of Dictyostelium discoideum exhibited differences in the size of restriction fragments of the extrachromosomal 88-kilobase ribosomal DNA (rDNA) palindrome. Polymorphisms in rDNA also were found among strains derived solely from the NC4 wild-type isolate. These variations involved EcoRI fragments II, III, and V; they included loss of the EcoRI site separating fragments II and V and deletion and insertion of DNA. More than one rDNA form can coexist in the same diploid or haploid cell. However, one or another parental rDNA tended to predominate in diploids constructed, using the parasexual cycle, between haploid NC4-derived strains and haploid wild-type isolates. In some cases, most if not all of the rDNA of such diploids were of one form after ca. 50 generations of growth. Segregant haploids, derived from diploids that possessed predominantly a single rDNA allele, possessed the same allele as the diploid and did not recover the other form. This evidence implies that replication does not proceed from a single chromosomal or extrachromosomal copy of the rDNA during the asexual life cycle of D. discoideum.  相似文献   

16.
Isolates of Pyricularia grisea from wheat (Triticum aestivum Lam.) and triticale (x Triticosecale Wittmack) spikes with blast symptoms were analyzed by classical (VCG) and molecular (RAPD) techniques. P. grisea mutants, unable to use sodium nitrate (nit) as nitrogen source, were obtained with potassium chlorate. For vegetative compatibility (VCG) tests, genetically complementary nit mutant pairs were inoculated in a medium with sodium nitrate as a single nitrogen source. P. grisea isolates were divided into two vegetative compatibility groups and two RAPD groups. Since vegetative compatible strains may mutually exchange genetic and cytoplasmatic material, the contribution of the parasexual cycle in the genetic variability of Brazilian P. grisea isolates is discussed.  相似文献   

17.
The object of this investigation was to discover whether heterokaryosis and parasexuality occur in the imperfect fungus Ascochyta imperfecta. Both phenomena have been observed. The wild type of A. imperfecta grows on a minimal medium containing only salts plus a carbon source. Auxotrophic and morphological mutants have been isolated after treatment with ultraviolet light. When 2 different mutant auxotrophs are inoculated together onto minimal medium, colonies are consistently formed. These colonies might be due, a priori, to back-mutation, diploidy, syntrophism or heterokaryosis. Back-mutation and diploidy have been eliminated, since no back-mutant nuclei have been isolated from any heterokaryon, and since the frequency of diploid nuclei is very low. The combination is primarily syntrophic (only 2% heterokaryotic hyphal tips) when the nicotinamide mutant is one component. The combination is primarily heterokaryotic (over 50% heterokaryotic hyphal tips) when both components are auxotrophs for amino acids. From the heterokaryotic hyphal tips, the 2 unaltered nuclear components have been isolated. Heterozygous diploid nuclei (4.2 X 10−-7 per haploid nucleus) can be isolated from heterokaryons by plating, onto minimal medium, the primarily uninucleate conidia from a heterokaryon of 2 auxotrophs. The resulting colonies are isolated as potential diploids. Three properties of these isolates establish their diploid nature: (1) the isolates are wild type for nutrition and morphology; (2) their conidial length is uniformly greater than that of the haploids (1.21 times); (3) the isolates produce segregants with nonparental combinations of the marker genes. The diploid isolates are much more stable than heterokaryons. The recombinants from the diploids are still diploid, since (1) their conidial length falls in the diploid range, and (2) one of the recombinants has segregated a second-order recombinant. Many of the expected classes of recombinants have not been detected.  相似文献   

18.
Bennett RJ  Johnson AD 《The EMBO journal》2003,22(10):2505-2515
The human pathogenic fungus Candida albicans has traditionally been classified as a diploid, asexual organism. However, mating-competent forms of the organism were recently described that produced tetraploid mating products. In principle, the C.albicans life cycle could be completed via a sexual process, via a parasexual mechanism, or by both mechanisms. Here we describe conditions in which growth of a tetraploid strain of C.albicans on Saccharomyces cerevisiae 'pre-sporulation' medium induced efficient, random chromosome loss in the tetraploid. The products of chromosome loss were often strains that were diploid, or very close to diploid, in DNA content. If they inherited the appropriate MTL (mating-type like) loci, these diploid products were themselves mating competent. Thus, an efficient parasexual cycle can be performed in C.albicans, one that leads to the reassortment of genetic material in this organism. We show that this parasexual cycle-consisting of mating followed by chromosome loss-can be used in the laboratory for simple genetic manipulations in C.albicans.  相似文献   

19.
Candida species exhibit a variety of ploidy states and modes of sexual reproduction. Most species possess the requisite genes for sexual reproduction, recombination, and meiosis, yet only a few have been reported to undergo a complete sexual cycle including mating and sporulation. Candida albicans, the most studied Candida species and a prevalent human fungal pathogen, completes its sexual cycle via a parasexual process of concerted chromosome loss rather than a conventional meiosis. In this study, we examine ploidy changes in Candida tropicalis, a closely related species to C. albicans that was recently revealed to undergo sexual mating. C. tropicalis diploid cells mate to form tetraploid cells, and we show that these can be induced to undergo chromosome loss to regenerate diploid forms by growth on sorbose medium. The diploid products are themselves mating competent, thereby establishing a parasexual cycle in this species for the first time. Extended incubation (>120 generations) of C. tropicalis tetraploid cells under rich culture conditions also resulted in instability of the tetraploid form and a gradual reduction in ploidy back to the diploid state. The fitness levels of C. tropicalis diploid and tetraploid cells were compared, and diploid cells exhibited increased fitness relative to tetraploid cells in vitro, despite diploid and tetraploid cells having similar doubling times. Collectively, these experiments demonstrate distinct pathways by which a parasexual cycle can occur in C. tropicalis and indicate that nonmeiotic mechanisms drive ploidy changes in this prevalent human pathogen.  相似文献   

20.
Cell nuclei were prepared from protoplasts of an adenine-requiring strain ofSaccharomyces cerevisiae, then purified in a discontinuous sucrose gradient, and applied to protoplasts of a recipient strain auxotrophic for uracil, leucine, and histidine. The transfer of the isolated nuclei into protoplasts was induced with polyethylene glycol. The main products of nuclear transfer in young complemented colonies were heterokaryons giving rise to parental type spontaneuos segregants on nutritionally complete medium. After several passages in minimal medium, however, the prototrophic colonies consisted exclusively of stable heterozygous diploid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号