首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expansins are cell wall-loosening proteins and now widely accepted to associate with the plant resistance against various abiotic stresses. In this study, we cloned an expansin gene of AstEXPA1 from Agrostis stolonifera, a heat-resistant creeping bentgrass cultivar, and transformed it into tobacco plants. Physiological index test showed that the transgenic lines were resistant to various abiotic stresses of drought, heat, cold, and salt in comparison to non-transgenic plants. Comprehensive analysis of four physiological response indices showed that the transgenic plants performed much better resistance to drought, following to heat, cold and salt stress, respectively. Meanwhile soluble sugar content displayed more weight to plant resistance by over-expressing AstEXPA1 gene, followed as proline content, REL, and MDA content. The results here would expand our understanding of the expansin roles and drive better insights into plant molecular breeding against stress.  相似文献   

2.
Genetic analysis of osmotic adjustment in crop plants   总被引:25,自引:4,他引:21  
Plant water deficit is a component of several different stresses, including drought, salinity and low temperatures, which severely limit plant growth and crop productivity. Genetic modification of plants to allow growth and yield under unfavourable conditions is an important component of the solution to problems of environmental stress. While disagreement and even confusion may characterize some of the discussions on what constitutes a significant and an effective osmotic adjustment (OA) is receiving increasing recognition as a major mechanism. This paper starts with review of OA functions, genetic variation and inheritance, and theories and principles involved in commonly used protocols for quantifying OA. Emphasis is placed on a summary of current molecular strategies and advanced in the improvement of plant stress resistance through manipulating OA. They include a genetic engineering approach and a QTL mapping approach. Future promising strategies for improving drought resistance lie in molecular technology that allows genes or QTLs controlling OA to be tagged and isolated, these genes to be expressed in transgenic plants, and efficiency of breeding via marker-assisted selection to be improved. Aspects of QTL utilization in plant genetics, breeding and physiology and future research directions are discussed.  相似文献   

3.
4.
With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.  相似文献   

5.
6.
7.
Enhancing drought tolerance in C(4) crops   总被引:1,自引:0,他引:1  
Adaptation to abiotic stresses is a quantitative trait controlled by many different genes. Enhancing the tolerance of crop plants to abiotic stresses such as drought has therefore proved to be somewhat elusive in terms of plant breeding. While many C(4) species have significant agronomic importance, most of the research effort on improving drought tolerance has focused on maize. Ideally, drought tolerance has to be achieved without penalties in yield potential. Possibilities for success in this regard are highlighted by studies on maize hybrids performed over the last 70 years that have demonstrated that yield potential and enhanced stress tolerance are associated traits. However, while our understanding of the molecular mechanisms that enable plants to tolerate drought has increased considerably in recent years, there have been relatively few applications of DNA marker technologies in practical C(4) breeding programmes for improved stress tolerance. Moreover, until recently, targeted approaches to drought tolerance have concentrated largely on shoot parameters, particularly those associated with photosynthesis and stay green phenotypes, rather than on root traits such as soil moisture capture for transpiration, root architecture, and improvement of effective use of water. These root traits are now increasingly considered as important targets for yield improvement in C(4) plants under drought stress. Similarly, the molecular mechanisms underpinning heterosis have considerable potential for exploitation in enhancing drought stress tolerance. While current evidence points to the crucial importance of root traits in drought tolerance in C(4) plants, shoot traits may also be important in maintaining high yields during drought.  相似文献   

8.
9.
Chickpea is a highly nutritious grain legume crop, widely appreciated as a health food, especially in the Indian subcontinent. The major constraints on chickpea production are biotic (Helicoverpa, bruchid, aphid, ascochyta) and abiotic (drought, heat, salt, cold) stresses, which reduce the yield by up to 90%. Various strategies like conventional breeding, molecular breeding, and modern plant breeding have been used to overcome these problems. Conventionally, breeding programs aim at development of varieties that combine maximum number of traits through inter-specific hybridization, wide hybridization, and hybridization involving more than two parents. Breeding is difficult in this crop because of its self-pollinating nature and limited genetic variation. Recent advances in in vitro culture and gene technologies offer unique opportunities to realize the full potential of chickpea production. However, as of date, no transgenic chickpea variety has been approved for cultivation in the world. In this review, we provide an update on the development of genetically modified chickpea plants, including those resistant to Helicoverpa armigera, Callosobruchus maculatus, Aphis craccivora, as well as to drought and salt stress. The genes utilized for development of resistance against pod borer, bruchid, aphid, drought, and salt tolerance, namely, Bt, alpha amylase inhibitor, ASAL, P5CSF129A, and P5CS, respectively, are discussed.  相似文献   

10.
11.
Crop responses to drought and the interpretation of adaptation   总被引:20,自引:0,他引:20  
Drought is a multidimensional stress affecting plants at various levels of their organization. The effect of and plant response to drought at the whole plant and crop level is most complex because it reflects the integration of stress effects and responses at all underlying levels of organization over space and time. This review discusses some of the major aspects of crop response to drought stress which are relevant for plant breeding. Emphasis is given to whole plant aspects which are too often disregarded when conclusions are drawn from molecular studies towards the genetic improvement of crop drought resistance. Topics discussed are seedling emergence and establishment, plant phenology, leaf area, water deficit and assimilation, osmotic adjustment, the root and the formation of yield. The discussion is concluded with the interpretation of crop adaptation to drought conditions in its agronomic sense. Conclusions are drawn regarding plant breeding for drought-prone conditions.  相似文献   

12.
Faba bean (Vicia faba L.) is a valuable feed and food crop with potential for development globally as a staple protein crop. Its consumption is limited by the anti-nutritional factors vicine and convicine (v-c) in its seeds. A single gene (vc - ) confers the low v-c phenotype in faba bean. Time-consuming and laborious quantitative chemical analysis is currently used in breeding programs to detect v-c concentration. Molecular markers within or linked to the vc - gene could facilitate rapid and cost-effective screening of early generation breeding populations for low v-c concentration. The large and complex faba bean genome has been an impediment to the progress of development of molecular breeding strategies. Here, we report a high-throughput low-cost KASP (Kompetitive Allele Specific PCR) marker for low v-c concentration in faba bean. The KASP assay successfully distinguished low and high v-c lines of faba bean. This marker is a significant and valuable molecular tool for faba bean breeding programs aiming to reduce v-c from faba beans worldwide.  相似文献   

13.
Increased incidences of abiotic and biotic stresses impacting productivity in principal crops are being witnessed all over the world. Extreme events like prolonged droughts, intense rains and flooding, heat waves and frost damages are likely to further increase in future due to climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome abiotic stresses to some extent. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for the management of abiotic stress, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we can exploit their unique properties of tolerance to extremities, their ubiquity, genetic diversity, their interaction with crop plants and develop methods for their successful deployment in agriculture production. Besides influencing the physico-chemical properties of rhizospheric soil through production of exopolysaccharides and formation of biofilm, microorganisms can also influence higher plants response to abiotic stresses like drought, chilling injury, salinity, metal toxicity and high temperature, through different mechanisms like induction of osmo-protectants and heat shock proteins etc. in plant cells. Use of these microorganisms per se can alleviate stresses in crop plants thus opening a new and emerging application in agriculture. These microbes also provide excellent models for understanding the stress tolerance, adaptation and response mechanisms that can be subsequently engineered into crop plants to cope with climate change induced stresses.  相似文献   

14.
Environmental stresses dramatically affect plant survival and productivity. Because plants are immobile, presumably different strategies are required for protection against transient stresses. Under stress, plants synthesize specific proteins, and their accumulation has a role in protecting the tissue from possible damage. An increasing number of studies show the existence of cross‐tolerance in plants: Exposure of tissue to moderate stress conditions often induces resistance to other stresses. Many varied mechanisms explaining the phenomenon of cross‐tolerance have been proposed, and they often, but not always, suggest that specific proteins are induced by one kind of stress and are involved in the protection against other kinds. Although various cross‐protections have been demonstrated in a number of plants, a common mechanism has not been found. This review discusses heat‐shock proteins and their possible roles in protecting the plant under heat and other stresses.  相似文献   

15.
Among grain legumes, faba bean is becoming increasingly popular in European agriculture due to recent economic and environmental interests. Faba bean can be a highly productive crop, but it is sensitive to drought stress and yields can vary considerably from season to season. Understanding the physiological basis of drought tolerance would indicate traits that can be used as indirect selection criteria for the development of cultivars adapted to drought conditions. To assess genotypic variation in physiological traits associated with drought tolerance in faba bean and to determine relationships among these attributes, two pot experiments were established in a growth chamber using genetic materials that had previously been screened for drought response in the field. Nine inbred lines of diverse genetic backgrounds were tested under adequate water supply and limited water conditions. The genotypes showed substantial variation in shoot dry matter, water use, stomatal conductance, leaf temperature, transpiration efficiency, carbon isotope discrimination (Δ13C), relative water content (RWC) and osmotic potential, determined at pre-flowering vegetative stage. Moisture deficits decreased water usage and consequently shoot dry matter production. RWC, osmotic potential, stomatal conductance and Δ13C were lower, whereas leaf temperature and transpiration efficiency were higher in stressed plants, probably due to restricted transpirational cooling induced by stomatal closure. Furthermore, differences in stomatal conductance, leaf temperature, Δ13C and transpiration efficiency characterized genotypes that were physiologically more adapted to water deficit conditions. Correlation analysis also showed relatively strong relationships among these variables under well watered conditions. The drought tolerant genotypes, ILB-938/2 and Melodie showed lower stomatal conductance associated with warmer leaves, whereas higher stomatal conductance and cooler leaves were observed in sensitive lines (332/2/91/015/1 and Aurora/1). The lower value of Δ13C coupled with higher transpiration efficiency in ILB-938/2, relative to sensitive lines (Aurora/1 and Condor/3), is indeed a desirable characteristic for water-limited environments. Finally, the results showed that stomatal conductance, leaf temperature and Δ13C are promising physiological indicators for drought tolerance in faba bean. These variables could be measured in pot-grown plants at adequate water supply and may serve as indirect selection criteria to pre-screen genotypes.  相似文献   

16.
Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA) protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA), dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification.  相似文献   

17.
18.
干旱是影响烟草正常生长、发育、产量和烟叶品质的一个重要逆境因子。在干旱胁迫下,植物体内会通过激发一些抗旱基因的表达来增强植物的抗旱能力。目前,很多抗旱相关的功能蛋白基因和调控蛋白基因已被克隆并在烟草中实现了遗传转化,外源抗旱基因的表达提高了转基因烟草的抗旱能力。抗旱基因的克隆为烟草抗旱新品种的培育奠定了良好的分子基础,系统深入地研究抗旱相关基因在干旱胁迫条件下的表达与调控,可为通过基因工程手段提高烟草的抗旱能力开辟新途径,同时也能为其他农作物的抗旱分子育种和品种改良提供基因资源。  相似文献   

19.
干旱、盐渍、低温和高温等非生物胁迫严重影响植物的生长发育和作物的产量。在长期的进化过程中,植物逐渐形成了对外部刺激快速感知和主动适应的能力,其中植物体内逆境信号的传递在植物快速感知外部刺激和主动适应非生物胁迫过程中起着非常重要的作用。蛋白激酶和蛋白磷酸酶催化的蛋白质磷酸化和去磷酸化是植物体内存在的最普遍且最重要的信号转导调节方式。其中,蛋白激酶的主要作用是将ATP或GTP上的γ磷酸基团转移到特定的底物蛋白上,使蛋白磷酸化,被磷酸化的蛋白发挥相应的生理功能。近年来,利用生物技术和基因工程等手段从细胞、分子水平上研究有关蛋白激酶的抗逆机理,通过基因沉默、基因过表达等策略提高植物的抗逆性成为国内外抗逆分子生物学与分子育种学研究的热点。本文主要对植物蛋白激酶在介导非生物胁迫和激素信号通路中的作用进行综述,为进一步研究植物蛋白激酶功能提供有价值的信息。  相似文献   

20.
Abiotic stresses, especially salinity and drought, are the primary causes of crop loss worldwide. Plant adaptation to environmental stresses is dependent upon the activation of cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Consequently, engineering genes that protect and maintain the function and structure of cellular components can enhance tolerance to stress. Our limited knowledge of stress-associated metabolism remains a major gap in our understanding; therefore, comprehensive profiling of stress-associated metabolites is most relevant to the successful molecular breeding of stress-tolerant crop plants. Unraveling additional stress-associated gene resources, from both crop plants and highly salt- and drought-tolerant model plants, will enable future molecular dissection of salt-tolerance mechanisms in important crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号