首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protocols are now available for seed harvest, storage and germination of several mesohaline and polyhaline species; however, low seedling survival rates point to the need for an increased understanding of factors affecting seedling establishment. Depth of seed burial in sediments and initial seedling growth rates are shown to be limiting factors for photosynthetic competency of Ruppia maritima and Potamogeton perfoliatus. Seedling emergence is inversely proportional to planting depth on sediments ranging in grain size from coarse sands (850 μm) to silt (63 μm). Less than 6% of the seeds of either species emerged when buried to a depth of 3 cm in test sediments. Germination was greatest for seeds placed on the surface of sediments; however, these seedlings were subject to displacement because of the weak and fragile roots produced during early growth. Fine sediments may be more favorable for R. maritima seedling establishment, because seedling emergence and height decreased with increasing sediment grain size. Potamogeton perfoliatus seedlings seem to be more tolerant of a wider range of sediment grain sizes than R. maritima as indicated by the lack of an effect of sediment grain size on P. perfoliatus seed emergence, seedling height, and biomass. Increasing nutrients stimulated seedlings of both species; however, even at the highest concentrations tested, growth, as determined by shoot elongation and leaf and root formation, slowed within 7–10 days. This suggests factors other than mineral nutrients and light limit growth or that growth shifts from aboveground biomass production to belowground vegetative spread.  相似文献   

2.
The historic decline of submersed aquatic vegetation (SAV) in mesohaline regions of Chesapeake Bay, United States involved a diversity of plant species. The recent modest recovery is mostly, however, associated with a single, prolific but ephemeral species, Ruppia maritima. Two previously abundant and more stable species, Potamogeton perfoliatus and Stuckenia pectinata, have shown virtually no evidence of recovery. Based on previous studies that demonstrated the ability of R. maritima stands to enhance water clarity and nutrient conditions for SAV growth, we hypothesized that these beds would serve as effective “nursery” areas to incite transplant success for other SAV. We conducted experiments in a two‐phase study at small and large spatial scales designed to explore this “nursery effect” as a restoration approach to increase plant species diversity. The first phase was conducted at small spatial scales to test effects of patch density by planting P. perfoliatus and S. pectinata into bare, sparse, and densely vegetated areas within three similar R. maritima beds in a tributary of Chesapeake Bay. Mean seasonal percent survivorship and shoot density were significantly higher in bare patches compared to vegetated patches. In the second phase of the study, P. perfoliatus was transplanted into separate R. maritima beds of different densities to test the effect of bed scale plant density on P. perfoliatus survival and growth. Transplant success of P. perfoliatus was positively correlated with the density of R. maritima among all sites.  相似文献   

3.
Selection of strategies to efficiently utilize limited seed supplies in efforts to restore the seagrass Zostera marina (eelgrass) requires a better understanding of the processes that limit seedling establishment at potential restoration sites. We investigated the effect of seed distribution timing on seedling establishment and tested for interactive effects of seed burial and distribution timing. We also investigated the effect of habitat type on seedling establishment by distributing Z. marina seeds inside and outside of established Ruppia maritima (widgeongrass) patches and examined mechanisms causing habitat differences by manipulating seed position (buried or unburied) and vulnerability to seed predators (unprotected or protected in packets). Seeds distributed on the sediment surface in the summer (July or August) produced fewer seedlings than seeds distributed in fall (October) in five of six trials over 3 years. Seed burial increased success rates for seeds distributed in summer at one of two sites tested, eliminating the effect of season, but reduced success at the other site. Seeds placed in R. maritima generally produced fewer seedlings than seeds in bare sand, and although seed burial and protection in packets increased success in bare sand at three of four sites, the effect was less consistent in R. maritima. We conclude that seed predation and physical interactions were influential in reducing seedling establishment in R. maritima, contrary to hypotheses positing a nursery role for existing vegetation. Efficient restoration efforts with Z. marina seeds should target unvegetated areas after summertime sources of mortality have diminished. Direct seed burial may enhance seedling establishment rates.  相似文献   

4.
Seed germination recovery aptitude is an adaptive trait of overriding significance for the successful establishment and dispersal of extremophile plants in their native ecosystems. Cakile maritima is an annual halophyte frequent on Mediterranean coasts, which produces transiently dormant seeds under high salinity, that germinate fast when soil salinity is lowered by rainfall. Here, we report ecophysiological and proteomic data about (1) the effect of high salt (200 mM NaCl) on the early developmental stages (germination and seedling) and (2) the seed germination recovery capacity of this species. Upon salt exposure, seed germination was severely inhibited and delayed and seedling length was restricted. Interestingly, non‐germinated seeds remained viable, showing high germination percentage and faster germination than the control seeds after their transfer onto distilled water. The plant phenotypic plasticity during germination was better highlighted by the proteomic data. Salt exposure triggered (1) a marked slower degradation of seed storage reserves and (2) a significant lower abundance of proteins involved in several biological processes (primary metabolism, energy, stress‐response, folding and stability). Yet, these proteins showed strong increased abundance early after stress release, thereby sustaining the faster seed storage proteins mobilization under recovery conditions compared to the control. Overall, as part of the plant survival strategy, C. maritima seems to avoid germination and establishment under high salinity. However, this harsh condition may have a priming‐like effect, boosting seed germination and vigor under post‐stress conditions, sustained by active metabolic machinery.  相似文献   

5.

Background and Aims

Seeds of annual halophytes such as Suaeda maritima experience fluctuating salinity, hydration, hypoxia and temperature during dormancy. Germination then occurs in one flush of 2–3 weeks after about 5 months of winter dormancy during which time the seeds can remain in saline, often waterlogged soil. The aim of this study was to investigate the effect of simulated natural conditions during dormancy on germination and to compare this with germination following the usual conditions of storing seeds dry. The effects of hydration, salinity, hypoxia and temperature regimes imposed during dormancy on germination were investigated. Also looked at were the effects of seed size on germination and the interaction between salinity during dormancy and salinity at the time of germination.

Methods

Various pre-treatments were imposed on samples of seeds that had been stored dry or wet for different periods of time during the 5 months of natural dormancy. Subsequent germination tests were carried out in conditions that simulated those found in the spring when germination occurs naturally. Various salinities were imposed at germination for a test of interaction between storage salinity and salinity at germination.

Key Results

A temperature of about 15 °C was needed for germination and large seeds germinated earlier and better than small seeds. Cold seawater pre-treatment was necessary for good germination; the longer the saline pre-treatment during the natural dormancy period the better the germination. There appeared to be no effect of any specific ion of the seawater pre-treatment on germination and severe hypoxia did not prevent good germination. A short period of freezing stimulated early germination in dry-stored seed. Storage in cold saline or equivalent osmotic medium appeared to inhibit germination during the natural dormancy period and predispose the seed to germinate when the temperature rose and the salinity fell. Seeds that were stored in cold wet conditions germinated better in saline conditions than those stored dry.

Conclusions

The conditions under which seeds of S. maritima are stored affect their subsequent germination. Under natural conditions seeds remain dormant in highly saline, anoxic mud and then germinate when the temperature rises above about 15 °C and the salinity is reduced.Key words: Suaeda maritima, germination, pre-treatment, salinity, temperature  相似文献   

6.
  • Seed germination of Citrullus colocynthis, as in many other species of Cucurbitaceae, is inhibited by light, particularly at low temperatures. Germination response to light and temperature has been attributed to day length and temperature during seed maturation. This study assessed the effects of these factors on the germination response of C. colocynthis to temperature and light quality.
  • Ripe fruits were collected from natural habitats during December and February and germinated at three temperatures (15/25, 20/30 and 25/35 °C) in five light treatments (dark, white light and Red:Far Red (R:FR) ratios of 0.30, 0.87 and 1.19). Additionally, unripe fruits were also collected from natural habitats and completed their maturation in growth chambers under different day lengths (6, 16 and 24 h of darkness) at 10/20 °C, and in darkness at both 10/20 °C and 25/35 °C. Mature seeds of the different treatments were germinated in the same five light treatments at 15/25 °C.
  • Germination was significantly higher in the dark than that in any light treatment. Seeds matured at higher temperatures (i.e. seeds from the December collection and those matured at 25/35 °C) had significantly higher germination than those matured at lower temperatures (i.e. seeds from the February collection and those matured at 10/20 °C). Dark germination was significantly higher for the December collection than for the February collection. Seeds of the two collections germinated in the dark only at 15/25 °C. However, seeds matured in a growth chamber at 10/20 °C in darkness germinated at 15/25 °C in all light treatments, except for the R:FR ratio 0.30. Seeds of the different treatments failed to germinate in FR‐rich light.
  • This study demonstrates that both temperature and day length during seed maturation play significant roles in the germination response of C. colocynthis. Additionally, the dark requirement for germination is likely beneficial for species with the larger seeds, such as C. colocynthis, which produce bigger seedlings that are able to emerge from deep soils and are competitively superior under dense vegetation and resource‐limited conditions.
  相似文献   

7.
With restricted populations and a small number of individuals, Discocactus bahiensis Britton & Rose (Cactaceae) is an endangered species in Brazil and its capacity for the formation of seed banks in the soil and the maintenance of seed viability remains unknown. Thus, the aim of the present study was to determine the most efficient way to maintain viability during storage of seeds of D. bahiensis . Seeds were stored in paper bags and either kept in a cold chamber (7 ± 2°C) in the dark (ex situ conservation) or buried in the soil to a depth of 5 cm in an area of natural occurrence of the species (in situ conservation). Germinability of the seed banks was evaluated monthly for 20 months. During the first 10 months of storage, germinability of the seeds conserved in situ and ex situ was similar to that of recently collected seeds. After this period, a 70% reduction in germinability was found for the seeds maintained in situ and there was nearly complete loss of viability after 12 months of storage in the field (germinability < 10% in the last 8 months of the experiment), indicating the ability to form persistent soil seed banks. In contrast, the seeds stored in the cold chamber maintained greater than 70% germinability throughout the entire analysis period, demonstrating that ex situ conservation is the most efficient way to maintain the viability of the seeds of this endangered species.  相似文献   

8.
Information on seed dormancy is one of the primary requirements for successful seedling propagation of submerged aquatics and seagrass. Studies on Ruppia maritima seed germination have been done, but the presence, requirements, and the types of dormancy have not been well understood. A laboratory study was conducted to understand presence and types of organic dormancy of the seeds of estuarine R. maritima collected from Lake Pontchartrain, Louisiana, USA. Our study results indicate that the brackish estuarine R. maritima population produces seeds that do not have any noticeable initial morphological, physical, and physiological dormancy. Although dry stratification reduced seed viability and final germination rates, drying seems to induce an earlier germination in R. maritima. Desiccation also appears to induce an environmental dormancy that can be disrupted by exposure to water. Further study on environmental dormancy is needed to provide information to develop methods for long-term seed storage that can be employed in greenhouse seedling propagation. Handling editor: P. Viaroli  相似文献   

9.
Pinus palustris (longleaf pine) savannas depend on contiguous grass cover to facilitate frequent surface fires. Enhanced flowering, seed production, and germination may be linked to season of fires. We assessed the effect of month of prescribed fire (February, April, May, and July) on percentage of plants with flowering culms (FCs%), FC/area, FC/plant, seed production, and germination for five warm seasons, fall‐flowering grasses. Multivariate analysis indicated the response of flowering and fruiting to burn month varied among the grass species. The dominant species, Sporobolus junceus and Schizachyrium scoparium var. stoloniferum, had greater numbers of most flowering characteristics when burnt during April, May, and July. Aristida purpurascens had increased FC/plant after May and July burns. In contrast, Ar. mohrii had the fewest FC/plant and seeds/FC when burnt in July. Germination was greatest (26–60%) for Ar. purpurascens. Seeds collected following July burns for Ar. purpurascens and Ar. ternarius and after May burns for S. junceus were within the highest germination values recorded. Germination of Sc. scoparium var. stoloniferum was very low after February and July burns (≤5%). With Ar. mohrii, only seed collected following February (2%) and April burns (3%) germinated. April, May, and July fires increased seed production of dominant matrix grasses, thus facilitating the potential for recruitment of these species and facilitating seed collection from potential donor sites for ground‐layer restoration projects. Varying prescribed fire burn month captured variation in flowering characteristics among these grasses.  相似文献   

10.
In a herbaceous community subjected to continual impacts of sika deer (Cervus nippon), I examined the effects of seed ingestion by deer on seeds by comparing the ripening and germination rates of seeds of two dominant species, Zoysia japonica and Hydrocotyle maritima, between seeds taken out of fecal pellets (deer-ingested seeds) and mature seeds collected directly from living plants (control seeds). Seeds of Z. japonica were likely to have tolerance to ingestion from earlier periods of seed maturity. In contrast, only ripened seeds of H. maritima may have tolerance to ingestion. When the seeds ripened, the germination rates of two species did not differ significantly between deer-ingested seeds and control seeds. Thus, although immature seeds may be crushed by ingestion, many mature seeds can be dispersed by sika deer with no alteration of germination rate. However, the other germination experiment showed that the germination rates were significantly higher for seeds of Juncus tenuis in artificially broken fecal pellets than for those kept confined in the pellets, and all seeds germinated from intact pellets were situated near the surface of the pellets. These results suggest that dung may physically prevent seeds inside from germinating and decomposition of dung enables herbaceous small seeds in the dung to germinate.  相似文献   

11.
12.
  • Grasslands across the globe are undergoing expansive degradation due to human impacts and climate change. If restoration of degraded native grassland is to be achieved at the scale now required, cost‐effective means for seed‐based establishment of grass species is crucial. However, grass seeds present numerous challenges associated with handling and germination performance that must be overcome to improve the efficiency of seeding. Previous research has demonstrated that complete removal of the palea and lemma (husk) maximises germination performance, hence we investigated the effects of complete husk removal on seed handling and germination of four temperate Australian grass species.
  • Three techniques were tested to remove the husk – manual cleaning, flaming or acid digestion (the latter two followed by a manual cleaning step); these techniques were refined and adapted to the selected species, and germination responses were compared.
  • The complete removal of the husk improved seed handling and sowability for all species. Germination was improved in Microlaena stipoides by 19% and in Rytidosperma geniculatum by 11%. Of the husk removal methods tested, flaming was detrimental to seed germination and fatal for one species (R. geniculatum). Compared to manual cleaning, sulphuric acid improved the overall efficacy of the cleaning procedure and increased germination speed (T50) in Austrostipa scabra, Chloris truncata and M. stipoides, and improved final germination in R. geniculatum by 13%.
  • The seed processing methods developed and tested in the present study can be applied to grass species that present similar handling and germination performance impediments. These and other technological developments (seed coating and precision sowing) will facilitate more efficient grassland restoration at large scale.
  相似文献   

13.
Seeds of high‐mountain species are thought to germinate rapidly, synchronously and at high percentages after a cold period, with limited dependence on the external environment; yet, empirical evidence only partially supports this behaviour. We performed a comparative study of the germination response of two closely related taxa along an altitude gradient in northern Spain. Seeds from several maternal families of six populations of Saxifraga trifurcata (lowland species) and S. canaliculata (highland species) were subjected to temperature and stratification treatments. Germination percentages and germination rates were analysed using generalised linear mixed modelling and accelerated failure‐time modelling. We found that germination percentages and germination rates were high and dependent on incubation temperature in both species. Within species, seeds from higher altitudes had higher germination percentages under all conditions. Cold–wet stratification negatively affected germination success, particularly in the lowland species. Overall, the highland species was less responsive to the experimental treatments and showed more synchronous germination patterns. We conclude that seeds from these two Saxifraga species germinate as efficiently as species from other habitats, but have a narrower germination response, probably due to the stronger selective pressures in their harsh environments. Finally, a cold, wet stratification period is not a prerequisite for the germination of high‐mountain S. canaliculata, and its strong negative effect on the germination of its lowland relative S. trifurcata may contribute to the altitudinal segregation of these two species.  相似文献   

14.
研究了培养基质、储藏方式和盐度对3种海滨植物互花米草(Spartina alterniflora)、盐地碱蓬(Suaeda salsa)和芦苇(Phragmites australis)种子萌发的影响,探索在潮间带环境下海滨植物种子萌发适应策略。结果表明:3种植物的干藏种子和湿藏芦苇种子随着盐度的升高,萌发率和萌发速率均显著下降,湿藏互花米草和盐地碱蓬种子在各盐度下萌发率和萌发速率差异不显著。各盐度-土培-干藏互花米草,中、高盐度-土培-干藏盐地碱蓬,土培各处理,中、高盐度-水培-干藏,高盐度-水培-湿藏芦苇种子萌发失败。湿藏提高了各盐度处理下土培互花米草,中、高盐度-水培和土培盐地碱蓬,淡水、中盐度-水培芦苇种子的萌发率和萌发速率。干藏互花米草种子在中、高盐度和土埋条件下种子的萌发受到抑制,限制了互花米草向高潮带与潮上带的扩展;而经常受潮水浸淹保持湿润的种子能抵抗高盐和泥沙沉积,导致互花米草种群逐步向低潮带方向发展;湿藏芦苇种子在淡水中萌发率和萌发速率最高,当潮上带盐度降低时,芦苇具有很强的竞争优势,但是对盐度和土埋敏感,限制了其向海的拓展;盐地碱蓬在中、高盐度和土培条件下萌发速率最高,快速萌发的适应策略和广适应性在盐地碱蓬占据高潮带和中潮带广大区域的过程中起到了重要的作用。  相似文献   

15.
The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP‐ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear‐localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3‐1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col‐0 wild‐type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability.  相似文献   

16.
1. Vernal pools and rock pools (gnammas) in the Southwest Australian Floristic Region are forms of temporary wetlands that are under threat. Some of their aquatic macrophytes are rare and/or endemic, and there is a need to develop off‐site seed banks to assure their conservation. Here, we report results of the first comprehensive study of the seed germination, dormancy and seed storage behaviour of nine indigenous macrophyte species. 2. Seeds of Glossostigma drummondii, Myriophyllum balladoniense, M. lapidicola, M. petreaum and Triglochin linearis were non‐dormant, whereas those of Damasonium minus, Glossostigma sp. (currently undescribed), G. trichodes and Myriophyllum crispatum were dormant. Non‐dormant seeds germinated over a range of temperatures (5–20 °C) but temperatures at which highest germination occurred were species specific. All species demonstrated a germination preference for the light. Warm stratification substantially increased germination of dormant Glossostigma trichodes seeds and all dormancy‐breaking treatments partially overcame dormancy in Glossostigma spp. 3. Seeds possessed orthodox storage behaviour (tolerating drying to 5% moisture content and storage at ?18 °C) and are thus amenable to seed banking as a means of ex situ conservation. 4. It appears that seeds of most species are able to germinate upon inundation as long as they are situated at the soil surface. Thus, species are opportunistic and respond to the first rains of the season providing prompt ecological cuing in an environment vulnerable to rapid drying events. Maintaining the integrity of the soil crust may be an important first step for on‐site conservation if seeds are in the superficial layers.  相似文献   

17.
Tessier  M.  Gloaguen  J.C.  Lefeuvre  J.C. 《Plant Ecology》2000,147(2):193-203
This study describes life history and population dynamics of the annual halophyte Suaeda maritima, at initial stages of seedling development, in salt-marshes of the Mont-Saint-Michel Bay. Effects of salinity on seed germination and seedling development were studied both in the laboratory and in the field. Salinity was measured as sediment electrical conductivity. Experiments in the laboratory showed that Suaeda maritima was relatively tolerant to salinity during the germination stage. In the field, germination occurred when soil salinity was minimal. Almost all seeds germinated in the field; this may explain the absence of a persistent seed bank. Salinity did not seem to affect the growth of seedlings either. Mortality in the field was attributed to physical factors such as anoxia during temporary immersion, burial by sediment and tidal uprooting. The intensity of these effects varied according to the location of Suaeda maritima seedlings: in hollows, along the edge of tidal creeks, in gaps among dense vegetation cover, or in pattern with Puccinellia maritima. Perennial vegetation did not restrict Suaeda maritima germination. In contrast, perennials such as Puccinellia maritima and Halimione portulacoides limited the development of Suaeda maritima seedlings since only a small number of this annual emerged beneath their canopies. The fate of seedlings depended to a great extent on the permeability of the perennial canopy to light. Thus, disturbance resulting in bare patches inside the perennial vegetation seemed essential for the development of this annual species. Suaeda maritima can grow in the presence of Puccinellia maritima so long as the latter present as an open matrix. Suaeda maritima may also benefit from protection against desiccation and tidal action where this occurs.  相似文献   

18.
Ethylene is invariably produced during seed germination but its role in regulating seed dormancy and germination is poorly understood. Seeds of 22 halophytic species having different life forms – salt secreting dicots, salt secreting monocots, stem succulents and leaf succulents were germinated in Petri dishes kept in a growth chamber set at 20/30 °C (night/day) temperature and a 12 hr light period. Sodium chloride and ethephon were added to the medium from the beginning of the experiment. Seed germination was recorded every other day for twenty days. Application of ethylene did not have any significant effect on releasing seeds from innate dormancy. However, it appeared to have a role in alleviation of salinity effects which varied from negative in certain species to almost complete alleviation of high salinity effects in others.Our data indicates that ethylene appears to have little role in breaking innate seed dormancy however, in most halophyte seeds studied, application of ethylene alleviate the salinity effect to various degrees. Halophyte seeds which could germinate under saline conditions approaching twice the salinity of seawater may offer clues to understand management of seed germination under highly saline conditions. To cite this article: M.A. Khan et al., C. R. Biologies 332 (2009).  相似文献   

19.
The Chesapeake Bay, like many other temperate estuaries, has exhibited dramatic declines in the abundance of submerged aquatic vegetation (SAV) during the later half of the twentieth century. Because of the functions SAV serve in maintaining a healthy estuarine ecosystem, SAV restoration has become an important component of Chesapeake Bay restoration. Specifically, recent water quality improvements in areas from which populations of Zostera marina (eelgrass) have been extirpated have suggested that Z. marina restoration could succeed. Early restoration efforts involved transplanting Z. marina plants from healthy source beds to restoration locations, but this was labor intensive, time consuming, expensive, and potentially detrimental to donor beds. This multi‐year project investigated new techniques for large‐scale Z. marina seed collection and processing and compared two seed dispersal methods to evaluate cost effectiveness. Tens of millions of mature Z. marina seeds were collected through snorkeling, SCUBA, or with a mechanical harvester. Seed storage conditions and processing techniques were manipulated in order to maximize seed yield. Seeds were dispersed using two methods: spring seed buoys and fall seed broadcasts. Our costs for planting 1 ha of bottom with Z. marina seeds ranged from $6,674 to $165,699 depending on seeding density and dispersal method used. The average cost per Z. marina seed was $0.17. Interannual variations in seed collection yield and seed viability after summer storage had great impact on final costs. Our results suggest that the use of seeds for large‐scale Z. marina restoration offers a competitive advantage to more traditional transplanting methods.  相似文献   

20.
We tested the hypothesis that currents, waves, and sediment grain size affect the dispersal of seeds and seedlings of the submersed angiosperms Ruppia maritima, Potamogeton perfoliatus and Stuckenia pectinata. Seed settling velocities and initiation of motion of seeds and seedlings and distance transported were quantified on four sediment types under a range of currents and waves in a flume. The rapid settling velocities of R. maritima and S. pectinata seeds and the increased settling velocity of P. perfoliatus in currents above 8 cm/second suggest that primary dispersal of these species is localized to the general area colonized by their parents. Once settled within a bed, seeds are exposed to weak currents and waves, and are likely to be subject to sediment deposition which may further limit dispersal. In contrast, in restoration projects, the absence of vegetation is likely to make seeds more vulnerable to grazing and transport, and may contribute to the lack of plant establishment. If seeds germinate without being buried, they are susceptible to secondary dispersal at relatively low current velocities and small wave heights due to the drag exerted on the cotyledon. Sand grains tend to stick to the seed coat and rootlet of P. perfoliatus seedlings, perhaps a mechanism to reduce the chances of being displaced following germination. These data reveal the close links between sediment, water flow, and submersed angiosperm seedling establishment; these parameters should be considered when using seeds for restoration of submersed angiosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号