首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
Energy budgets of larval stages of the Chinese green lacewing, Chrysopa sinica (Tjeder) (Neuroptera: Chrysopidae) were determined under laboratory conditions at photo‐period of 14:10 L:D, 27 ± 1°C and 75%± 2% RH. The energy used as ingestion, assimilation, respiration, productivity and feces was constructed for each developmental stage. In addition, under these experimental conditions, the potential of C. sinica as a biological control agent was evaluated according to the ingestion by this predator and the energy content of cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae). The larval stage of C. sinica was able to consume 1281.4 1‐day‐old aphids, 1018.7 2‐day‐old aphids, 626.9 3‐day‐old aphids, 393.5 4‐day‐old aphids, 312.1 5‐day‐old aphids or 203.5 9‐day‐old aphids, respectively. No significant difference was detected between the estimated number of aphids consumed by the lacewings using energetic methods and the actual number of aphids consumed by the lacewings in this experiment. Our results showed that C. sinica is an important natural enemy of the cotton aphid, and energetic methods are very useful to quantify biological control efficacy of natural enemies.  相似文献   

2.
Effects of elevated CO2 levels on the amino acid constituents of cotton aphid, Aphis gossypii (Glover), fed on transgenic Bacillus thuringiensis (Berliner) (Bt) cotton [Cryl A(c)], grown in ambient and double‐ambient CO2 levels in closed‐dynamics CO2 chambers, were investigated. Lower amounts of amino acids were found in cotton phloem under elevated CO2 than under ambient CO2 levels. However, higher amounts of free amino acids were found in A. gossypii fed on elevated CO2‐grown cotton than those fed ambient CO2‐grown cotton, and the contents of amino acids in honeydew were not significantly affected by elevated CO2 levels. A larger amount of honeydew was produced by cotton aphids feeding on leaves under elevated CO2 treatment than those feeding on leaves under ambient CO2 treatment, which indicates that A. gossypii ingests more cotton phloem because of the higher C:N ratio of cotton phloem under elevated CO2 levels. Moreover, the amino acid composition was similar in bodies of aphids ingesting leaves under both CO2 treatments, except for two alkaline amino acids, lysine and arginine. This suggests that the nutritional constitution of the phloem sap was important for A. gossypii. Our data suggest that more phloem sap will be ingested by A. gossypii to satisfy its nutritional requirement and balance the break‐even point of amino acid in elevated CO2. Larger amounts of honeydew produced by A. gossypii under elevated CO2 will reduce the photosynthesis and result in the occurrence of some Entomophthora spp.  相似文献   

3.
Abstract Effects of CO2 level (ambient vs. elevated) on the interactions among three cotton (Gossypium hirsutum) genotypes, the cotton aphid (Aphis gossypii Glover), and its hymenoptera parasitoid (Lysiphlebia japonica Ashrnead) were quantified. It was hypothesized that aphid‐parasitoid interactions in crop systems may be altered by elevated CO2, and that the degree of change is influenced by plant genotype. The cotton genotypes had high (M9101), medium (HZ401) and low (ZMS13) gossypol contents, and the response to elevated CO2 was genotype‐specific. Elevated CO2 increased the ratio of total non‐structural carbohydrates to nitrogen (TNC: N) in the high‐gossypol genotype and the medium‐gossypol genotype. For all three genotypes, elevated CO2 had no effect on concentrations of gossypol and condensed tannins. A. gossypii fitness declined when aphids were reared on the high‐gossypol genotype versus the low‐gossypol genotype under elevated CO2. Furthermore, elevated CO2 decreased the developmental time of L. japonica associated with the high‐gossypol genotype and the low‐gossypol genotype, but did not affect parasitism or emergence rates. Our study suggests that the abundance of A. gossypii on cotton will not be directly affected by increases in atmospheric CO2. We speculate that A. gossypii may diminish in pest status in elevated CO2 and high‐gossypol genotype environments because of reduced fitness to the high‐gossypol genotype and shorter developmental time of L. japonica.  相似文献   

4.
Abstract Effects of elevated CO2 (twice ambient vs. ambient) and Bt Cry1Ac transgene (Bt cotton cv. 33B vs. its nontransgenic parental line cv. DP5415) on the interspecific competition between two ecologically similar species of cotton aphid Aphis gossypii and whitefly biotype‐Q Bemisia tabaci were studied in open‐top chambers. The results indicated that elevated CO2 and Bt cotton both affected the population abundances of A. gossypii and biotype‐Q B. tabaci when introduced solely (i.e., without interspecific competition) or two species coexisted (i.e., with interspecific competition). Compared with ambient CO2, elevated CO2 increased the population abundances of A. gossypii and biotype‐Q B. tabaci as fed on Bt and nontransgenic cotton on 45 (i.e., seedling stage) and 60 (i.e., flowering stage) days after planting (DAP), but only significantly enhanced aphid abundance without interspecific competition on the 45‐DAP nontransgenic cotton and 60‐DAP Bt cotton, and significantly increased whitefly abundance with interspecific competition on the 45‐DAP Bt cotton and 60‐DAP nontransgenic cotton. In addition, compared with nontransgenic cotton at elevated CO2, Bt cotton significantly reduced biotype‐Q B. tabaci abundances without and with interspecific competition during seedling and flowering stage, while only significantly decreasing A. gossypii abundances without interspecific competition during the seedling stage. When the two insect species coexisted, the proportions of biotype‐Q B. tabaci were significantly higher than those of A. gossypii on Bt and nontransgenic cotton at the same CO2 levels, and elevated CO2 only significantly increased the percentages of biotype‐Q B. tabaci and significantly reduced the proportions of A. gossypii on seedling and flowering nontransgenic cotton. Therefore, the effects of elevated CO2 were favorable for biotype‐Q B. tabaci to out‐compete A. gossypii under the predicted global climate change.  相似文献   

5.
T.-Y. Chen  T.-X. Liu 《BioControl》2001,46(4):481-491
Relative consumption of three aphid species, Aphis gossypii Glover, Myzus persicae (Sulzer) and Lipaphis erysimi (Kaltenbach) (Homoptera: Aphididae), by larvae of the lacewing, Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae), was determined in the laboratory, together with effects on lacewing development and survival. Percentages of survival of C. rufilabris from first instar to adult eclosion were significantly different among lacewing larvae fed different aphid species. When larvae were fed A. gossypii and M. persicae, all larvae developed to adulthood. All larvae died prematurely when they were fed L. erysimi. Developmental duration of C. rufilabris larvae was significantly shorter when larvae were fed A. gossypii (18.0 d) than when larvae were fed M. persicae (19.2 d). The number of fourth instar aphids consumed during development by C. rufilabris larvae differed significantly among individuals fed different aphid species. Chrysoperla rufilabris consumed an average of 168 M. persicae, followed by 141.6 A. gossypii, and only 26.6 L. erysimi. The percentage of these total number of aphids consumed by each larval stadium of C. rufilabris varied significantly among aphid species. The percentage of A. gossypii consumed by each larval stadium was similar to that for M. persicae, 12.1 and 11.4% by the first instar, 15.7 and 13.1% by the second instar, and 72.2 and 75.5% by the third instar, respectively; whereas in the case of L. erysimi, 23.3% of the total number of aphids were consumed by the first instar, 30.1% by the second instar, and 46.6% by the third instar.  相似文献   

6.
Allocation of allomones of transgenic Bacillus thuringiensis Gossypium hirsutum (Bt cotton) (cv. GK-12) and non-Bt-transgenic cotton (cv. Simian-3) grown in elevated CO2 in response to infestation by cotton aphid, Aphis gossypii Glover, was studied in a closed-dynamics CO2 chamber. Significant increases in foliar condensed tannin and carbon/nitrogen ratio for GK-12 and Simian-3 were observed in elevated CO2 relative to ambient CO2, as partially supported by the carbon nutrient balance hypothesis, owing to limiting nitrogen and excess carbon in cotton plants in response to elevated CO2. The CO2 level significantly influenced the foliar nutrients and allomones in the cotton plants. Aphid infestation significantly affected foliar nitrogen and allomone compounds in the cotton plants. Allomone allocation patterns in transgenic Bt cotton infested by A. gossypii may have broader implications across a range of plant and herbivorous insects as CO2 continues to rise. Gang Wu and Fa Jun Chen contributed equally to this work.  相似文献   

7.
Interactions between the moth Spodoptera littoralis and two of its host plants, alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) were examined, using plants grown under ambient (350 ppm) and elevated (700 ppm) CO2 conditions. To determine strength and effects of herbivore‐induced responses assays were performed with both undamaged (control) and herbivore damaged plants. CO2 and damage effects on larval host plant preferences were determined through dual‐choice bioassays. In addition, larvae were reared from hatching to pupation on experimental foliage to examine effects on larval growth and development. When undamaged plants were used S. littoralis larvae in consumed more cotton than alfalfa, and CO2 enrichment caused a reduction in the preference for cotton. With damaged plants larvae consumed equal amounts of the two plant species (ambient CO2 conditions), but CO2 enrichment strongly shifted preferences towards cotton, which was then consumed three times more than alfalfa. Complementary assays showed that elevated CO2 levels had no effect on the herbivore‐induced responses of cotton, whereas those of alfalfa were significantly increased. Larval growth was highest for larvae fed undamaged cotton irrespectively of CO2 level, and lowest for larvae on damaged alfalfa from the high CO2 treatment. Development time increased on damaged cotton irrespectively of CO2 treatment, and on damaged alfalfa in the elevated CO2 treatment. These results demonstrate that elevated CO2 levels can cause insect herbivores to alter host plant preferences, and that effects on herbivore‐induced responses may be a key mechanism behind these processes. Furthermore, since the insects were shown to avoid foliage that reduced their physiological performance, our data suggest that behavioural host plant shifts result in partial escape from negative consequences of feeding on high CO2 foliage. Thus, CO2 enrichment can alter both physiology and behaviour of important insect herbivores, which in turn may to impact plant biodiversity.  相似文献   

8.
Effects of elevated atmospheric CO2 (double‐ambient CO2) on the growth and metabolism of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), fed on transgenic Bacillus thuringiensis (Berliner) (Bt) cotton [Cry1A(c)], grown in open‐top chambers, were studied. Two levels of CO2 (ambient and double‐ambient) and two cotton cultivars (non‐transgenic Simian‐3 and transgenic GK‐12) were deployed in a completely randomized design with four treatment combinations, and the cotton bollworm was reared on each treatment simultaneously. Plants of both cotton cultivars had lower nitrogen and higher total non‐structural carbohydrates (TNC), TNC:Nitrogen ratio, condensed tannin, and gossypol under elevated CO2. Elevated CO2 further resulted in a significant decrease in Bt toxin level in GK‐12. The changes in chemical components in the host plants due to increased CO2 significantly affected the growth parameters of H. armigera. Both transgenic Bt cotton and elevated CO2 resulted in a reduced body mass, lower fecundity, decreased relative growth rate (RGR), and decreased mean relative growth rate in the bollworms. Larval life‐span was significantly longer for H. armigera fed transgenic Bt cotton. Significantly reduced larval, pupal, and adult moth weights were observed in the bollworms fed elevated CO2‐grown transgenic Bt cotton compared with those of bollworms reared on non‐transgenic cotton, regardless of the CO2 level. The efficiency of conversion of ingested food and of digested food of the bollworm were significantly reduced when fed transgenic Bt cotton, but there was no significant CO2 or CO2× cotton cultivar interaction. Approximate digestibility of larvae reared on transgenic cotton grown in elevated CO2 was higher compared to that of larvae fed non‐transgenic cotton grown at ambient CO2. The damage inflicted by cotton bollworm on cotton, regardless of the presence or absence of insecticidal genes, is predicted to be more serious under elevated CO2 conditions because of individual compensatory feeding on host plants caused by nitrogen deficiency.  相似文献   

9.
Biological control of economically important crop pests is an important component of integrated pest management (IPM) strategies. Predator–prey energy relationships are critical to the success of biocontrol strategies; however, these relationships are often ignored in many IPM programs. In this study, the biocontrol potential of cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), by the ladybeetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) was estimated in terms of energy budgets calculated at 27 ± 1 °C. The energy equivalent of prey subjects (aphids) consumed was estimated from bomb calorimetry and partitioned into the energy associated with ingestion, assimilation, respiration, reproduction, and waste for each developmental stage of the lady beetle. The average assimilation efficiencies for larval and adult ladybeetles were 88.2 and 91.1%, respectively, whereas net ecological efficiencies were 17.6% for larvae and 2.6% for adults. Similarly, assimilation efficiencies of cotton aphids were 71.5 and 74.4% for nymphs and adults, respectively. Based on energy budget calculations, approximately 520, 3‐day‐old aphids and 5 356, 3‐day‐old aphids were estimated to be consumed by the ladybeetle larval stage and the female adult stage, respectively. These estimates were similar to the actual number of aphids consumed by the ladybeetles, based on actual counts. The current data demonstrate that P. japonica is an important natural enemy of the cotton aphid, and that predator–prey energy relationships can play a critical role in biocontrol strategies and IPM programs.  相似文献   

10.
The performance of predators of plant pests is mainly driven by their ability to find prey. Recent studies suggest that rising atmospheric carbon dioxide (CO2) concentrations will affect the semiochemistry of plant–insect relationships, possibly altering prey‐finding behaviour. In the present study, we test the hypothesis that higher atmospheric CO2 concentrations affect the oviposition behaviour of an aphidophagous hoverfly and alter the development of its larvae. We also test the hypothesis that volatile compounds released by the plant–aphid association are modified under elevated CO2. Broad bean plants infested with pea aphids are grown under ambient (450 ppm) or elevated CO2 (800 ppm) concentrations. Plants raised under each treatment are then presented to gravid hoverfly females in a dual‐choice bioassay. In addition, emerging Episyrphus balteatus larvae are directly fed with aphids reared under ambient or elevated CO2 conditions and then measured and weighed daily until pupation. Odours emitted by the plant–aphid association are sampled. A larger number of eggs is laid on plants grown under ambient CO2 conditions. However, no significant difference is observed between the two groups of predatory larvae grown under different CO2 concentrations, indicating that the CO2 concentration does not affect the quality of their aphid diet. Although plant volatiles do not differ between the ambient and elevated CO2‐treated plants, we find that the quantity of aphid alarm pheromone is lower on the plant–aphid association raised under the elevated CO2 condition. This suggests that an alteration of semiochemical emissions by elevated CO2 concentrations impacts the oviposition behaviour of aphid predators.  相似文献   

11.
Abstract Plant allocation to defensive compounds by elevated CO2‐grown non‐transgenic and transgenic Bt cotton in response to infestation by cotton aphid, Aphis gossypii (Glover) in open‐top chambers under elevated CO2 were studied. The results showed that significantly lower foliar nitrogen concentration and Bt toxin protein occurred in transgenic Bt cotton with and without cotton aphid infestation under elevated CO2. However, significantly higher carbon/nitrogen ratio, condensed tannin and gossypol were observed in transgenic Bt cotton “GK‐12” and non‐transgenic Bt cotton ‘Simian‐3’ under elevated CO2. The CO2 level and cotton variety significantly influenced the foliar nitrogen, condensed tannin and gossypol concentrations in the plant leaves after feeding by A. gossypii. The interaction between CO2 level × infestation time (24 h, 48 h and 72 h) showed a significant increase in cotton condensed tannin concentrations, while the interaction between CO2 level × cotton variety significantly decreased the true choline esterase (TChE) concentration in the body of A. gossypi. This study exemplified the complexities of predicting how transgenic and non‐transgenic plants will allocate defensive compounds in response to herbivorous insects under differing climatic conditions. Plant defensive compound allocation patterns and aphid enzyme changes observed in this study appear to be broadly applicable across a range of plant and herbivorous insect interactions as CO2 atmosphere rises.  相似文献   

12.
Abstract Global atmospheric CO2 concentrations have risen rapidly since the Industrial Revolution and are considered as a primary factor in climate change. The effects of elevated CO2 on herbivore insects were found to be primarily through the CO2‐induced changes occurring in their host plants, which then possibly affect the intensity and frequency of pest outbreaks on crops. This paper reviews several ongoing research models using primary pests of crops (cotton bollworm, whitefly, aphids) and their natural enemies (ladybeetles, parasitoids) in China to examine insect responses to elevated CO2. It is generally indicated that elevated CO2 prolonged the development of cotton bollworm, Helicoverpa armigera, a chewing insect, by decreasing the foliar nitrogen of host plants. In contrast, the phloem‐sucking aphid and whitefly insects had species‐specific responses to elevated CO2 because of complex interactions that occur in the phloem sieve elements of plants. Some aphid species, such as cotton aphid, Aphis gossypii and wheat aphid, Sitobion avenae, were considered to represent the only feeding guild to respond positively to elevated CO2 conditions. Although whitefly, Bemisia tabaci, a major vector of Tomato yellow leaf curl virus, had neutral response to elevated CO2, the plants became less vulnerable to the virus infection under elevated CO2. The predator and parasitoid response to elevated CO2 were frequently idiosyncratic. These documents from Chinese scientists suggested that elevated CO2 initially affects the crop plant and then cascades to a higher trophic level through the food chain to encompass herbivores (pests), their natural enemies, pathogens and underground nematodes, which disrupt the natural balance observed previously in agricultural ecosystems.  相似文献   

13.
We carried out a factorial experiment to explore the effect of doubled CO2 concentration and a 3 °C temperature increase on the development of a complete generation of the beetles Octotoma championi Baly and O. scabripennis Guérin‐Méneville (Coleoptera: Chrysomelidae). These species are biological control agents of Lantana camara L. (Verbenaceae), with a leaf‐mining larval phase and free‐living, leaf‐chewing adults. Plants grown at elevated CO2 had enhanced above‐ground biomass, thicker leaves, reduced nitrogen concentration, and increased C:N ratios. Under the high temperature treatment, plants grown at ambient CO2 suffered wilting and premature leaf loss, despite daily watering; this effect was ameliorated at elevated CO2. The wilting of plants in the ambient CO2/high temperature treatment reduced the emergence success of the beetles, particularly O. championi. Development time was accelerated by approximately 10–13 days at the higher temperature, but was not affected by CO2. Neither CO2 nor temperature affected adult beetle weight. Consumption rates of free‐living beetles were not affected by either CO2 or temperature. By contrast, in the short‐term trials using excised foliage, beetles given no choice between ambient and elevated CO2‐grown foliage, consumed more from ambient plants. When beetles were offered a choice between foliage grown at the two CO2 levels, O. championi did not display a significant preference but O. scabripennis consumed more ambient CO2‐grown foliage when feeding at the lower temperature. This study indicates that under future conditions of higher temperatures, amelioration of water stress in host plants growing in elevated CO2 may benefit some endophagous insects by reducing premature leaf loss. Under some circumstances, this benefit may outweigh the deleterious effects of lower leaf nitrogen. Our results also indicate that foliage consumption under elevated CO2 by mobile, adult insects on whole plants may not be significantly increased, as was previously indicated by short‐term experiments using excised foliage.  相似文献   

14.
Effects of elevated CO2 on the foraging behavior of cotton bollworm Helicoverpa arrnigera Hübner reared on milky grains of spring wheat grown in ambient, 550μL/L and 750μL/L CO2 concentration atmospheres in open-top chambers (OTC) were studied. The results indicated that: (i) elevated CO2 significantly affected both the type and amount of food eaten by H.arrnigera reared on milky grains of ambient CO2-grown wheat were significant higher than those for bollworm larvae reared on wheat grains grown in 550 and 750μL/L CO2 atmospheres; (ii) when bollworm larvae were reared on mixed milky grains from different CO2-grown wheat (food-choice condition), larval duration increased significantly-pupal weight, adult longevity, and fecundity decreased significantly, comparing with those reared on milky grains of ambient CO2-grown wheat, 550μL/L CO2-grown wheat and 750μL/L CO2-grown wheat respectively; (iii) significant decreases in the contents of fructose and gross protein (GP) and significant increases in the contents of glucose, amylose, total saccharides (TSC), TSC: GP ratio, free amino acids and soluble protein in the wheat grains with CO2 rising; (iv) and selected-foraging amount/food-choice index of cotton bollworm H.armigera were significantly positive correlated with the contents of fructose and GP of wheat grains, but they had significantly negative relationships with the contents of glucose, amylose, TSC and TSC: GP ratio of wheat grains.  相似文献   

15.
Under elevated environmental carbon dioxide (CO2), leaf chewers tend to compensate for decreased leaf nutritional quality with increased consumption; mortality and development times also increase and cause a reduction in the fitness of leaf chewers. However, the effect of elevated CO2 on multiple successive generations of these and other insects is not well understood. Furthermore, information about the direct effects of increased environmental CO2 on developmental time and consumption of herbivores is lacking. In this paper, we tested the hypothesis that cascade effects of elevated CO2 through plants, rather than the direct effects of elevated CO2, are the main factors decreasing the fitness of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). We used two series of experiments to quantify the growth, development, and consumption of H. armigera fed on an artificial diet or C4 plants (maize) grown under two CO2 levels (ambient vs. double ambient). In the first series of experiments, elevated CO2 had no effect on the population abundance or individual consumption for three successive generations of cotton bollworms fed on an artificial diet. In the second series of experiments, elevated CO2 reduced population abundance of cotton bollworm larvae for two successive generations when they were fed maize milky grains. The specific effects were longer larval duration, lower fecundity, and decreased rm of cotton bollworms. Furthermore, elevated CO2 increased individual consumption when cotton bollworm was fed maize milky grains for two successive generations and decreased the population’s total consumption in the first generation but increased it in the second generation. The results from this study indicate that: (1) The effects of elevated CO2 on three successive generations of cotton bollworm fed on artificial diet were weak, or even non‐existent, and (2) elevated CO2 increased the consumption when cotton bollworm were fed maize. Our study also suggests that the damage inflicted by cotton bollworm on maize (a C4 plant) will be seriously affected by the increases in atmospheric CO2, which is unlike our previous results for spring wheat (a C3 plant).  相似文献   

16.
Although distinct host specialization is observed for the cotton-melon aphid (Aphis gossypii Glover) on cotton and cucurbit plants, it is still ambiguous whether the specialization is altered by experience on a novel host plant. Here the performance of cotton and cucurbit-specialized aphids, A. gossypii on novel host plants was studied by a host-selection test and by the life-table method. The two host-specialized aphids cannot survive and establish populations after reciprocal host transfers. They have ability to recognize the host plants on which they were reared, and escape behavior from novel hosts was observed. Interestingly, the cotton and cucurbit-specialized aphids survive and reproduce normally on hibiscus (Hibiscus syriacus), a main overwintering host plant, and host-fidelity of A. gossypii to cucurbit plants is altered by feeding and living experience on hibiscus, which confers the same capacity to use cotton and cucumber on to the cucurbit-specialized population, but host-fidelity to cotton is not altered and the fitness of the cotton specialized population to cucumber is still poorer. A. gossypii from hibiscus has a significant preference for cotton to cucumber in the host-selection process, and none stays on cucumber more than 20 h after transfer. The results presented imply that cucurbit-specialized aphids might not return to an overwintering host plant (hibiscus) in wild fields, so host conservatism to cucurbit plants is maintained. The potential of cucurbit-specialized aphids of A. gossypii to use cotton plants, intermediated by experience on hibiscus, suggests that the specialized host-plant performance of phytophagous insects is not wholly conservative.  相似文献   

17.
1 Broad beans (Vicia faba L.) were grown at either ambient (350 μL/L) or elevated (700 μL/L) CO2. Elevated CO2 increased shoot weight by 14% and root weight by 24% compared to ambient, but did not affect flowering. 2 A single pea aphid (Acyrthosiphon pisum (Harris)) and its progeny decreased shoot and root weights by 20 and 24%, respectively, at ambient CO2 after 20 days, but did not affect flower number. At elevated CO2A. pisum decreased shoot and root weights by 27 and 34% and flower number decreased by 73%. 3 A single glasshouse and potato aphid (Aulacorthum solani (Kaltenbach)) and its progeny had no effect on the growth of bean plants after 20 days at ambient CO2. At elevated CO2, A. solani decreased shoot and root weights by 20 and 18%, and flower number by 60%. 4 The large reduction in flowering caused by aphids at elevated CO2 suggests a change in resource allocation within the plants to compensate for aphid infestation. 5 Aphid density was unaffected by elevated CO2, although there were significant effects of CO2 on the resulting population structure of both A. pisum and A solani. We suggest that at elevated CO2, aphids appear not to achieve their maximum reproductive potential and their populations are limited by the lower carrying capacity of their host plants.  相似文献   

18.
The effects of elevated CO2 (550 and 750 µL/L vs. ambient CO2) on the third trophic level, a predator Harmonia axyridis (Pallas) and a parasitoid Aphidius picipes (Nees), were studied in open-top chambers. The impact of elevated CO2 on the growth and development of H. axyridis was either weak or nonexistent, whereas the abundance of the parasitized aphid (Sitobion avenae Fabricius) by A. picipes showed a significant increase in 550 (12.5%) and 750 (19.6%) µL/L CO2 compared to ambient CO2, respectively. In addition, there was a significant decrease (10%) in the emergence rate of A. picipes under 750 µL/L CO2 compared to ambient CO2 (P<0.05). The predator and the parasitoid both substantially suppressed aphid abundance, especially in elevated CO2 for A. picipes. Moreover, H. axyridis and A. picipes preferred to prey on/parasitize more aphids, S. avenae, infested on 550 (9.1 and 16.9%) and 750 (23 and 25.7%) µL/L CO2-grown wheat plants than those fed ambient CO2-grown wheat plants. These initial results indicate that elevated CO2 markedly changes the predation/parasitization preference by the predator/parasitoid for wheat aphids. The biocontrol efficiency of A. picipes against S. avenae can be enhanced in elevated CO2; simultaneously, elevated CO2 has adverse effects on the growth and development of A. picipes-parasitized S. avenae.  相似文献   

19.
The performance of herbivore insects is determined directly by the quality of host plants. Elevated CO2 induced a decline in foliar nitrogen, which reduced the growth of chewing insects. Phloem-sucking insects (i.e. aphid), however, had species-specific responses to elevated CO2 and were the only feeding guild to respond positively to elevated CO2. Although many studies attempt to illuminate the interaction between aphids and plants under elevated CO2, few studies can explain why some aphids are more successful than other chewing insects in elevated CO2. Elevated CO2 leads to a re-allocation of the carbon and nitrogen resources in plant tissue, which increases the thickness of the microscopic structures of leaves, reduces amino acids content of leaf phloem sap and increases the secondary metabolites. Considering the complexity of aphid–plant interactions, it is difficult and unreasonable to predict the general response of aphids to elevated CO2 using a single plant component. Instead, it is more likely that aphids are able to overcome the disadvantages of the indirect effects of elevated CO2 by reducing developmental times and increasing fecundity under elevated CO2 conditions. Our results provide several clues to why some aphids are successful in elevated CO2 conditions. We review recent studies of the effects of elevated CO2 on aphids and discuss the effects of elevated CO2 on aphid performance on crops using cotton and cereal aphids as examples.  相似文献   

20.
1. Elevated CO2 can alter plant physiology and morphology, and these changes are expected to impact diet quality for insect herbivores. While the plastic responses of insect herbivores have been well studied, less is known about the propensity of insects to adapt to such changes. Genetic variation in insect responses to elevated CO2 and genetic interactions between insects and their host plants may exist and provide the necessary raw material for adaptation. 2. We used clonal lines of Rhopalosiphum padi (L.) aphids to examine genotype‐specific responses to elevated CO2. We used the host plant Schedonorus arundinaceus (tall fescue; Schreb), which is capable of asexual reproduction, to investigate host plant genotype‐specific effects and possible host plant‐by‐insect genotype interactions. The abundance and density of three R. padi genotypes on three tall fescue genotypes under three concentrations of CO2 (ambient, 700, and 1000 ppm) in a controlled greenhouse environment were examined. 3. Aphid abundance decreased in the 700 ppm CO2 concentration, but increased in the 1000 ppm concentration relative to ambient. The effect of CO2 on aphid density was dependent on host plant genotype; the density of aphids in high CO2 decreased for two plant genotypes but was unchanged in one. No interaction between aphid genotype and elevated CO2 was found, nor did we find significant genotype‐by‐genotype interactions. 4. This study suggests that the density of R. padi aphids feeding on tall fescue may decrease under elevated CO2 for some plant genotypes. The likely impact of genotype‐specific responses on future changes in the genetic structure of plant and insect populations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号