首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammalian cells, DNA double-strand breaks are repaired by non-homologous end-joining and homologous recombination, both pathways being essential for the maintenance of genome integrity. We determined the effect of mutations in Ku86 and DNA-PK on the efficiency and the accuracy of double-strand break repair by non-homologous end-joining and homologous recombination in mammalian cells. We used an assay, based on the transient transfection of a linearized plasmid DNA, designed to simultaneously detect transfection and recombination markers. In agreement with previous results non-homologous end-joining was largely compromised in Ku86 deficient cells, and returned to normal in the Ku86-complemented isogenic cell line. In addition, analysis of DNA plasmids recovered from Ku86 mutant cells showed an increased use of microhomologies at the nonhomologous end joining junctions, and displayed a significantly higher frequency of DNA insertions compared to control cells. On the other hand, the DNA-PKcs deficient cell lines showed efficient double-strand break repair by both mechanisms.  相似文献   

2.
To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs) [1]. Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) or single-strand annealing (SSA) [2]. Here, we created a transgenic reporter system in C. elegans to investigate the relative contribution of these pathways in somatic cells during animal development. Although all three canonical pathways contribute to repair in the soma, in their combined absence, animals develop without growth delay and chromosomal breaks are still efficiently repaired. This residual repair, which we call alternative end-joining, dominates DSB repair only in the absence of NHEJ and resembles SSA, but acts independent of the SSA nuclease XPF and repair proteins from other pathways. The dynamic interplay between repair pathways might be developmentally regulated, because it was lost from terminally differentiated cells in adult animals. Our results demonstrate profound versatility in DSB repair pathways for somatic cells of C. elegans, which are thus extremely fit to deal with chromosomal breaks.  相似文献   

3.

Background  

Efficient and correct repair of DNA damage, especially DNA double-strand breaks, is critical for cellular survival. Defects in the DNA repair may lead to cell death or genomic instability and development of cancer. Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks in mammalian cells. The ability of other repair pathways, such as homologous recombination, to compensate for loss of NHEJ and the ways in which contributions of different pathways are regulated are far from fully understood.  相似文献   

4.
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.  相似文献   

5.
Maintenance of genome stability relies on the accurate repair of DNA double-strand breaks (DSBs) that arise during DNA replication or introduced by DNA-damaging agents. Failure to repair such breaks can lead to the introduction of mutations and chromosomal translocations. Several pathways, homologous recombination, single-strand annealing and nonhomologous end-joining, are known to repair DSBs. So far in the silkworm Bombyx mori, these repair pathways have been analyzed using extrachromosomal plasmids in vitro or in cultured cells. To elucidate the precise nature of the chromosomal DSB repair pathways in cultured silkworm cells, we developed a luciferase-based assay system for measuring the frequency of chromosomal homologous recombination and SSA. An I-SceI-induced DSB, within a nonfunctional luciferase gene, could be efficiently repaired by HR. Additionally, the continuous expression of the I-SceI endonuclease in the HR reporter cell allowed us to investigate the interrelationship between HR, SSA and NHEJ. In this study, we demonstrated that chromosome DSBs were mainly repaired by NHEJ and HR, whereas SSA was unlikely to be a dominant repair pathway in cultured silkworm cell. These results indicate that the assay system presented here will be useful to analyze the mechanisms of DSB repair in insect cells.  相似文献   

6.
Mutagenesis is a prerequisite for evolution and also is an important contributor to human diseases. Most mutations in actively dividing cells originate during DNA replication as errors introduced when copying an undamaged DNA template or during the bypass of DNA lesions. In addition, mutations can be introduced during the repair of DNA double-strand breaks by either homologous recombination or non-homologous end-joining pathways. Finally, although generally considered to be a very high-fidelity process, the excision repair of DNA damage may be an important contributor to mutagenesis in non-dividing cells. In this review, we will discuss the well-known contributions of DNA replication to mutagenesis in Saccharomyces cerevisiae, as well as the less-appreciated contributions of recombination and repair to mutagenesis in this organism.  相似文献   

7.
DNA double-strand breaks (DSBs) are potentially lethal lesions repaired by two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Homologous recombination preferentially reunites cognate broken ends. In contrast, non-homologous end-joining could ligate together any two ends, possibly generating dicentric or acentric fragments, leading to inviability. Here, we characterize the yeast NHEJ pathway in populations of pure G1 phase cells, where there is no possibility of repair using a homolog. We show that in G1 yeast cells, NHEJ is a highly effective repair pathway for gamma-ray induced breaks, even when many breaks are present. Pulsed-field gel analysis showed chromosome karyotypes following NHEJ repair of cells from populations with multiple breaks. The number of reciprocal translocations was surprisingly low, perhaps zero, suggesting that NHEJ preferentially re-ligates the “correct” broken ends instead of randomly-chosen ends. Although we do not know the mechanism, the preferential correct ligation is consistent with the idea that broken ends are continuously held together by protein–protein interactions or by larger scale chromatin structure.  相似文献   

8.
Molecular mechanisms of DNA double-strand break repair   总被引:24,自引:0,他引:24  
DNA double-strand breaks (DSBs) are major threats to the genomic integrity of cells. If not taken care of properly, they can cause chromosome fragmentation, loss and translocation, possibly resulting in carcinogenesis. Upon DSB formation, cell-cycle checkpoints are triggered and multiple DSB repair pathways can be activated. Recent research on the Nijmegen breakage syndrome, which predisposes patients to cancer, suggests a direct link between activation of cell-cycle checkpoints and DSB repair. Furthermore, the biochemical activities of proteins involved in the two major DSB repair pathways, homologous recombination and DNA end-joining, are now beginning to emerge. This review discusses these new findings and their implications for the mechanisms of DSB repair.  相似文献   

9.
Playing the end game: DNA double-strand break repair pathway choice   总被引:1,自引:0,他引:1  
DNA double-strand breaks (DSBs) are highly toxic lesions that can drive genetic instability. To preserve genome integrity, organisms have evolved several DSB repair mechanisms, of which nonhomologous end-joining (NHEJ) and homologous recombination (HR) represent the two most prominent. It has recently become apparent that multiple layers of regulation exist to ensure these repair pathways are accurate and restricted to the appropriate cellular contexts. Such regulation is crucial, as failure to properly execute DSB repair is known to accelerate tumorigenesis and is associated with several human genetic syndromes. Here, we review recent insights into the mechanisms that influence the choice between competing DSB repair pathways, how this is regulated during the cell cycle, and how imbalances in this equilibrium result in genome instability.  相似文献   

10.
Abstract

DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.  相似文献   

11.
Elizabeth M. Kass 《FEBS letters》2010,584(17):3703-42482
DNA double-strand breaks resulting from normal cellular processes including replication and exogenous sources such as ionizing radiation pose a serious risk to genome stability, and cells have evolved different mechanisms for their efficient repair. The two major pathways involved in the repair of double-strand breaks in eukaryotic cells are non-homologous end joining and homologous recombination. Numerous factors affect the decision to repair a double-strand break via these pathways, and accumulating evidence suggests these major repair pathways both cooperate and compete with each other at double-strand break sites to facilitate efficient repair and promote genomic integrity.  相似文献   

12.
In humans, DNA double-strand breaks (DSBs) are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3′ single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. Here, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. We report that under both conditions, ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process.  相似文献   

13.
Aylon Y  Liefshitz B  Kupiec M 《The EMBO journal》2004,23(24):4868-4875
DNA double-strand breaks (DSBs) are dangerous lesions that can lead to genomic instability and cell death. Eukaryotic cells repair DSBs either by nonhomologous end-joining (NHEJ) or by homologous recombination. We investigated the ability of yeast cells (Saccharomyces cerevisiae) to repair a single, chromosomal DSB by recombination at different stages of the cell cycle. We show that cells arrested at the G1 phase of the cell cycle restrict homologous recombination, but are able to repair the DSB by NHEJ. Furthermore, we demonstrate that recombination ability does not require duplicated chromatids or passage through S phase, and is controlled at the resection step by Clb-CDK activity.  相似文献   

14.
The endless tale of non-homologous end-joining   总被引:1,自引:0,他引:1  
Weterings E  Chen DJ 《Cell research》2008,18(1):114-124
DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.  相似文献   

15.
DNA double-strand breaks (DSBs) in eukaryotic cells can be repaired by non-homologous end-joining or homologous recombination. The complex containing the Mre11, Rad50 and Nbs1 proteins has been implicated in both DSB repair pathways, even though they are mechanistically different. To get a better understanding of the properties of the human Mre11 (hMre11) protein, we investigated some of its biochemical activities. We found that hMre11 binds both double- and single-stranded (ss)DNA, with a preference for ssDNA. hMre11 does not require DNA ends for efficient binding. Interestingly, hMre11 mediates the annealing of complementary ssDNA molecules. In contrast to the annealing activity of the homologous recombination protein hRad52, the activity of hMre11 is abrogated by the ssDNA binding protein hRPA. We discuss the possible implications of the results for the role(s) of hMre11 in both DSB repair pathways.  相似文献   

16.
17.
McVey M  Radut D  Sekelsky JJ 《Genetics》2004,168(4):2067-2076
Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA requires strand invasion mediated by DmRad51, the product of the spn-A gene. In spn-A mutants, repair proceeds through a nonconservative pathway involving the annealing of microhomologies found within the 17-nt overhangs produced by P excision. We report here that end joining of P-element breaks in the absence of DmRad51 does not require Drosophila LIG4. In wild-type flies, SDSA is sometimes incomplete, and repair is finished by an end-joining pathway that also appears to be independent of LIG4. Loss of LIG4 does not increase sensitivity to ionizing radiation in late-stage larvae, but lig4 spn-A double mutants do show heightened sensitivity relative to spn-A single mutants. Together, our results suggest that a LIG4-independent end-joining pathway is responsible for the majority of double-strand break repair in the absence of homologous recombination in flies.  相似文献   

18.
The tumor suppressor gene BRCA1 was cloned in 1994 based on its linkage to early-onset breast and ovarian cancer. Although the BRCA1 protein has been implicated in multiple cellular functions, the precise mechanism that determines its tumor suppressor activity is not defined. Currently, the emerging picture is that BRCA1 plays an important role in maintaining genomic integrity by protecting cells from double-strand breaks (DSB) that arise during DNA replication or after DNA damage. The DSB repair pathways available in mammalian cells are homologous recombination and nonhomologous end-joining. BRCA1 function seems to be regulated by specific phosphorylations in response to DNA damage and we will focus this review on the roles played by BRCA1 in DNA repair and cell cycle checkpoints. Finally, we will explore the idea that tumor suppression by BRCA1 depends on its control of DNA DSB repair, resulting in the promotion of error-free and the inhibition of error-prone recombinational repair.  相似文献   

19.
DNA double stranded breaks (DSBs) are one of the most deleterious types of DNA lesions. The main pathways responsible for repairing these breaks in eukaryotic cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). However, a third group of still poorly characterized DSB repair pathways, collectively termed microhomology-mediated end-joining (MMEJ), relies on short homologies for the end-joining process. Here, we constructed GFP reporter assays to characterize and distinguish MMEJ variant pathways, namely the simple MMEJ and the DNA synthesis-dependent (SD)-MMEJ mechanisms. Transfection of these assay vectors in Chinese hamster ovary (CHO) cells and characterization of the repaired DNA sequences indicated that while simple MMEJ is able to mediate relatively efficient DSB repair if longer microhomologies are present, the majority of DSBs were repaired using the highly error-prone SD-MMEJ pathway. To validate the involvement of DNA synthesis in the repair process, siRNA knock-down of different genes proposed to play a role in MMEJ were performed, revealing that the knock-down of DNA polymerase θ inhibited DNA end resection and repair through simple MMEJ, thus favoring the other repair pathway. Overall, we conclude that this approach provides a convenient assay to study MMEJ-related DNA repair pathways.  相似文献   

20.
S H Teo  S P Jackson 《The EMBO journal》1997,16(15):4788-4795
DNA ligases catalyse the joining of single and double-strand DNA breaks, which is an essential final step in DNA replication, recombination and repair. Mammalian cells have four DNA ligases, termed ligases I-IV. In contrast, other than a DNA ligase I homologue (encoded by CDC9), no other DNA ligases have hitherto been identified in Saccharomyces cerevisiae. Here, we report the identification and characterization of a novel gene, LIG4, which encodes a protein with strong homology to mammalian DNA ligase IV. Unlike CDC9, LIG4 is not essential for DNA replication, RAD52-dependent homologous recombination nor the repair of UV light-induced DNA damage. Instead, it encodes a crucial component of the non-homologous end-joining (NHEJ) apparatus, which repairs DNA double-strand breaks that are generated by ionizing radiation or restriction enzyme digestion: a function which cannot be complemented by CDC9. Lig4p acts in the same DNA repair pathway as the DNA end-binding protein Ku. However, unlike Ku, it does not function in telomere length homeostasis. These findings indicate diversification of function between different eukaryotic DNA ligases. Furthermore, they provide insights into mechanisms of DNA repair and suggest that the NHEJ pathway is highly conserved throughout the eukaryotic kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号