首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date ∼80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Aβ, the proteolytic product of β-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Aβ and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Aβ40 and Aβ42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Aβ levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Aβ levels is modulated via β-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating β-secretase cleavage of APP and Aβ levels.  相似文献   

2.
Mouse models of Alzheimer disease (AD) have been generated based on Amyloid-β Precursor Protein (AβPP) and the Presenilin (PSEN) gene mutations associated with familial AD (FAD). Such models have provided valuable insights into AD pathogenesis and represent an important research tool for the discovery of potential treatments. To model amyloid deposition in AD, we generated a new mouse line based on the presence of two copies of the genomic region encoding human wild-type AβPP as well as a mutation (L166P) in the murine Psen1. By ~6 months of age, these mice have begun to develop cerebral Aβ pathology with a significant increase in the levels of AβPP C-terminal fragments and Aβ42, as well as increase Aβ42/Aβ40 ratio. Since in the brain and other tissues of these mice, wild-type human AβPP mRNA and protein levels are comparable to those of endogenous AβPP, this model may allow studies about the role of AβPP isoforms in the pathogenesis of AD. This animal model may be suitable to test drugs aimed at inhibiting expression or altering splicing and processing of AβPP, without artifacts associated with the presence of mutations in AβPP or overexpression due to the use of exogenous promoters. These features of the new model are of critical importance in assessing the success of therapeutic interventions.  相似文献   

3.

Background

Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer''s disease (AD) and Parkinson''s disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid β protein (Aβ) oligomers has been identified as one of the central toxic events in AD, accumulation of α-synuclein (α-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Aβ promotes α-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear.

Methodology/Principal Findings

In order to understand the molecular mechanisms involved in potential Aβ/α-syn interactions, immunoblot, molecular modeling, and in vitro studies with α-syn and Aβ were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Aβ and α-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Aβ binds α-syn monomers, homodimers, and trimers, forming hybrid ring-like pentamers. Interactions occurred between the N-terminus of Aβ and the N-terminus and C-terminus of α-syn. Interacting α-syn and Aβ dimers that dock on the membrane incorporated additional α-syn molecules, leading to the formation of more stable pentamers and hexamers that adopt a ring-like structure. Consistent with the simulations, under in vitro cell-free conditions, Aβ interacted with α-syn, forming hybrid pore-like oligomers. Moreover, cells expressing α-syn and treated with Aβ displayed increased current amplitudes and calcium influx consistent with the formation of cation channels.

Conclusion/Significance

These results support the contention that Aβ directly interacts with α-syn and stabilized the formation of hybrid nanopores that alter neuronal activity and might contribute to the mechanisms of neurodegeneration in AD and PD. The broader implications of such hybrid interactions might be important to the pathogenesis of other disorders of protein misfolding.  相似文献   

4.
Alzheimer''s disease (AD) is the most common neurodegenerative disorder leading to dementia. Neuritic plaque formation is one of the pathological hallmarks of Alzheimer''s disease. The central component of neuritic plaques is a small filamentous protein called amyloid β protein (Aβ)1, which is derived from sequential proteolytic cleavage of the beta-amyloid precursor protein (APP) by β-secretase and γ-secretase. The amyloid hypothesis entails that Aγ-containing plaques as the underlying toxic mechanism in AD pathology2. The postmortem analysis of the presence of neuritic plaque confirms the diagnosis of AD. To further our understanding of Aγ neurobiology in AD pathogenesis, various mouse strains expressing AD-related mutations in the human APP genes were generated. Depending on the severity of the disease, these mice will develop neuritic plaques at different ages. These mice serve as invaluable tools for studying the pathogenesis and drug development that could affect the APP processing pathway and neuritic plaque formation. In this protocol, we employ an immunohistochemical method for specific detection of neuritic plaques in AD model mice. We will specifically discuss the preparation from extracting the half brain, paraformaldehyde fixation, cryosectioning, and two methods to detect neurotic plaques in AD transgenic mice: immunohistochemical detection using the ABC and DAB method and fluorescent detection using thiofalvin S staining method.  相似文献   

5.

Background

We describe molecular processes that can facilitate pathogenesis of Alzheimer''s disease (AD) by analyzing the catalytic cycle of a membrane-imbedded protease γ-secretase, from the initial interaction with its C99 substrate to the final release of toxic Aβ peptides.

Results

The C-terminal AICD fragment is cleaved first in a pre-steady-state burst. The lowest Aβ42/Aβ40 ratio is observed in pre-steady-state when Aβ40 is the dominant product. Aβ42 is produced after Aβ40, and therefore Aβ42 is not a precursor for Aβ40. The longer more hydrophobic Aβ products gradually accumulate with multiple catalytic turnovers as a result of interrupted catalytic cycles. Saturation of γ-secretase with its C99 substrate leads to 30% decrease in Aβ40 with concomitant increase in the longer Aβ products and Aβ42/Aβ40 ratio. To different degree the same changes in Aβ products can be observed with two mutations that lead to an early onset of AD, ΔE9 and G384A. Four different lines of evidence show that γ-secretase can bind and cleave multiple substrate molecules in one catalytic turnover. Consequently depending on its concentration, NotchΔE substrate can activate or inhibit γ-secretase activity on C99 substrate. Multiple C99 molecules bound to γ-secretase can affect processive cleavages of the nascent Aβ catalytic intermediates and facilitate their premature release as the toxic membrane-imbedded Aβ-bundles.

Conclusions

Gradual saturation of γ-secretase with its substrate can be the pathogenic process in different alleged causes of AD. Thus, competitive inhibitors of γ-secretase offer the best chance for a successful therapy, while the noncompetitive inhibitors could even facilitate development of the disease by inducing enzyme saturation at otherwise sub-saturating substrate. Membrane-imbedded Aβ-bundles generated by γ-secretase could be neurotoxic and thus crucial for our understanding of the amyloid hypothesis and AD pathogenesis.  相似文献   

6.
Alzheimer’s disease (AD) is a neurodegenerative pathology associated with aging characterized by the presence of senile plaques and neurofibrillary tangles that finally result in synaptic and neuronal loss. The major component of senile plaques is an amyloid-β protein (Aβ). Recently, we characterized the effects of a single intracerebroventricular (icv) injection of Aβ fragment (25–35) oligomers (oAβ25–35) for up to 3 weeks in rats and established a clear parallel with numerous relevant signs of AD. To clarify the long-term effects of oAβ25–35 and its potential role in the pathogenesis of AD, we determined its physiological, behavioral, biochemical and morphological impacts 6 weeks after injection in rats. oAβ25–35 was still present in the brain after 6 weeks. oAβ25–35 injection did not affect general activity and temperature rhythms after 6 weeks, but decreased body weight, induced short- and long-term memory impairments, increased corticosterone plasma levels, brain oxidative (lipid peroxidation), mitochondrial (caspase-9 levels) and reticulum stress (caspase-12 levels), astroglial and microglial activation. It provoked cholinergic neuron loss and decreased brain-derived neurotrophic factor levels. It induced cell loss in the hippocampic CA subdivisions and decreased hippocampic neurogenesis. Moreover, oAβ25–35 injection resulted in increased APP expression, Aβ1–42 generation, and increased Tau phosphorylation. In conclusion, this in vivo study evidenced that the soluble oligomeric forms of short fragments of Aβ, endogenously identified in AD patient brains, not only provoked long-lasting pathological alterations comparable to the human disease, but may also directly contribute to the progressive increase in amyloid load and Tau pathology, involved in the AD physiopathology.  相似文献   

7.

Background

The deposition and oligomerization of amyloid β (Aβ) peptide plays a key role in the pathogenesis of Alzheimer''s disease (AD). Aβ peptide arises from cleavage of the membrane-associated domain of the amyloid precursor protein (APP) by β and γ secretases. Several lines of evidence point to the soluble Aβ oligomer (AβO) as the primary neurotoxic species in the etiology of AD. Recently, we have demonstrated that a class of fluorene molecules specifically disrupts the AβO species.

Methodology/Principal Findings

To achieve a better understanding of the mechanism of action of this disruptive ability, we extend the application of electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels in the Aβ peptide to investigate the binding and influence of fluorene compounds on AβO structure and dynamics. In addition, we have synthesized a spin-labeled fluorene (SLF) containing a pyrroline nitroxide group that provides both increased cell protection against AβO toxicity and a route to directly observe the binding of the fluorene to the AβO assembly. We also evaluate the ability of fluorenes to target multiple pathological processes involved in the neurodegenerative cascade, such as their ability to block AβO toxicity, scavenge free radicals and diminish the formation of intracellular AβO species.

Conclusions

Fluorene modified with pyrroline nitroxide may be especially useful in counteracting Aβ peptide toxicity, because they posses both antioxidant properties and the ability to disrupt AβO species.  相似文献   

8.

Background

A typical pathological feature of Alzheimer''s disease (AD) is the appearance in the brain of senile plaques made up of β-amyloid (Aβ) and neurofibrillary tangles. AD is also associated with an abnormal accumulation of some metal ions, and we have recently shown that one of these, aluminum (Al), plays a relevant role in affecting Aβ aggregation and neurotoxicity.

Methodology

In this study, employing a microarray analysis of 35,129 genes, we investigated the effects induced by the exposure to the Aβ1–42-Al (Aβ-Al) complex on the gene expression profile of the neuronal-like cell line, SH-SY5Y.

Principal Findings

The microarray assay indicated that, compared to Aβ or Al alone, exposure to Aβ-Al complex produced selective changes in gene expression. Some of the genes selectively over or underexpressed are directly related to AD. A further evaluation performed with Ingenuity Pathway analysis revealed that these genes are nodes of networks and pathways that are involved in the modulation of Ca2+ homeostasis as well as in the regulation of glutamatergic transmission and synaptic plasticity.

Conclusions and Significance

Aβ-Al appears to be largely involved in the molecular machinery that regulates neuronal as well as synaptic dysfunction and loss. Aβ-Al seems critical in modulating key AD-related pathways such as glutamatergic transmission, Ca2+ homeostasis, oxidative stress, inflammation, and neuronal apoptosis.  相似文献   

9.
Alzheimer disease is a progressive neurodegenerative brain disorder that leads to major debilitating cognitive deficits. It is believed that the alterations capable of causing brain circuitry dysfunctions have a slow onset and that the full blown disease may take several years to develop. Therefore, it is important to understand the early, asymptomatic, and possible reversible states of the disease with the aim of proposing preventive and disease-modifying therapeutic strategies. It is largely unknown how amyloid β-peptide (Aβ), a principal agent in Alzheimer disease, affects synapses in brain neurons. In this study, we found that similar to other pore-forming neurotoxins, Aβ induced a rapid increase in intracellular calcium and miniature currents, indicating an enhancement in vesicular transmitter release. Significantly, blockade of these effects by low extracellular calcium and a peptide known to act as an inhibitor of the Aβ-induced pore prevented the delayed failure, indicating that Aβ blocks neurotransmission by causing vesicular depletion. This new mechanism for Aβ synaptic toxicity should provide an alternative pathway to search for small molecules that can antagonize these effects of Aβ.  相似文献   

10.
Synaptic degeneration, including impairment of synaptic plasticity and loss of synapses, is an important feature of Alzheimer disease pathogenesis. Increasing evidence suggests that these degenerative synaptic changes are associated with an accumulation of soluble oligomeric assemblies of amyloid β (Aβ) known as ADDLs. In primary hippocampal cultures ADDLs bind to a subpopulation of neurons. However the molecular basis of this cell type-selective interaction is not understood. Here, using siRNA screening technology, we identified α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits and calcineurin as candidate genes potentially involved in ADDL-neuron interactions. Immunocolocalization experiments confirmed that ADDL binding occurs in dendritic spines that express surface AMPA receptors, particularly the calcium-impermeable type II AMPA receptor subunit (GluR2). Pharmacological removal of the surface AMPA receptors or inhibition of AMPA receptors with antagonists reduces ADDL binding. Furthermore, using co-immunoprecipitation and photoreactive amino acid cross-linking, we found that ADDLs interact preferentially with GluR2-containing complexes. We demonstrate that calcineurin mediates an endocytotic process that is responsible for the rapid internalization of bound ADDLs along with surface AMPA receptor subunits, which then both colocalize with cpg2, a molecule localized specifically at the postsynaptic endocytic zone of excitatory synapses that plays an important role in activity-dependent glutamate receptor endocytosis. Both AMPA receptor and calcineurin inhibitors prevent oligomer-induced surface AMPAR and spine loss. These results support a model of disease pathogenesis in which Aβ oligomers interact selectively with neurotransmission pathways at excitatory synapses, resulting in synaptic loss via facilitated endocytosis. Validation of this model in human disease would identify therapeutic targets for Alzheimer disease.  相似文献   

11.

Background

Alzheimers disease (AD) has been strongly linked to an anomalous self-assembly of the amyloid-β peptide (Aβ). The correlation between clinical symptoms of AD and Aβ depositions is, however, weak. Instead small and soluble Aβ oligomers are suggested to exert the major pathological effects. In strong support of this notion, immunological targeting of Aβ oligomers in AD mice-models shows that memory impairments can be restored without affecting the total burden of Aβ deposits. Consequently a specific immunological targeting of Aβ oligomers is of high therapeutic interest.

Methodology/Principal Findings

Previously the generation of conformational-dependent oligomer specific anti-Aβ antibodies has been described. However, to avoid the difficult task of identifying a molecular architecture only present on oligomers, we have focused on a more general approach based on the hypothesis that all oligomers expose multiple identical epitopes and therefore would have an increased binding to a multivalent receptor. Using the polyvalent IgM immunoglobulin we have developed a monoclonal anti-Aβ antibody (OMAB). OMAB only demonstrates a weak interaction with Aβ monomers and dimers having fast on and off-rate kinetics. However, as an effect of avidity, its interaction with Aβ-oligomers results in a strong complex with an exceptionally slow off-rate. Through this mechanism a selectivity towards Aβ oligomers is acquired and OMAB fully inhibits the cytotoxic effect exerted by Aβ(1-42) at highly substoichiometric ratios. Anti-Aβ auto-antibodies of IgM isotype are frequently present in the sera of humans. Through a screen of endogenous anti-Aβ IgM auto-antibodies from a group of healthy individuals we show that all displays a preference for oligomeric Aβ.

Conclusions/Significance

Taken together we provide a simple and general mechanism for targeting of oligomers without the requirement of conformational-dependent epitopes. In addition, our results suggest that IgM anti-Aβ auto-antibodies may exert a more specific protective mechanism in vivo than previously anticipated.  相似文献   

12.
Immunotherapy targeting of amyloid β (Aβ) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Aβ-targeted immunotherapy has also been demonstrated to reverse Aβ-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Aβ, Aβ3–7, differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Aβ in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Aβ. The conformation of the Aβ peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Aβ:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Aβ species postulated to underlie cognitive deficits in AD.  相似文献   

13.
Many neurodegenerative diseases are characterized by the conformational change of normal self-proteins into amyloidogenic, pathological conformers, which share structural properties such as high β-sheet content and resistance to degradation. The most common is Alzheimer''s disease (AD) where the normal soluble amyloid β (sAβ) peptide is converted into highly toxic oligomeric Aβ and fibrillar Aβ that deposits as neuritic plaques and congophilic angiopathy. Currently, there is no highly effective treatment for AD, but immunotherapy is emerging as a potential disease modifying intervention. A major problem with most active and passive immunization approaches for AD is that both the normal sAβ and pathogenic forms are equally targeted with the potential of autoimmune inflammation. In order to avoid this pitfall, we have developed a novel immunomodulatory method that specifically targets the pathological conformations, by immunizing with polymerized British amyloidosis (pABri) related peptide which has no sequence homology to Aβ or other human proteins. We show that the pABri peptide through conformational mimicry induces a humoral immune response not only to the toxic Aβ in APP/PS1 AD transgenic mice but also to paired helical filaments as shown on AD human tissue samples. Treated APP/PS1 mice had a cognitive benefit compared to controls (p<0.0001), associated with a reduction in the amyloid burden (p = 0.0001) and Aβ40/42 levels, as well as reduced Aβ oligomer levels. This type of immunomodulation has the potential to be a universal β-sheet disrupter, which could be useful for the prevention or treatment of a wide range of neurodegenerative diseases.  相似文献   

14.
Wang F  Zhou XL  Yang QG  Xu WH  Wang F  Chen YP  Chen GH 《PloS one》2011,6(11):e27649
The accumulation of the amyloid-β peptide (Aβ) into amyloid plaques, an essential event in Alzheimer''s disease (AD) pathogenesis, has caused researchers to seek compounds that physiologically bind Aβ and modulate its aggregation and neurotoxicity. In order to develop new Aβ-specific peptides for AD, a randomized 12-mer peptide library with Aβ1-10 as the target was used to identify peptides in the present study. After three rounds of selection, specific phages were screened, and their binding affinities to Aβ1-10 were found to be highly specific. Finally, a special peptide was synthesized according to the sequences of the selected phages. In addition, the effects of the special peptide on Aβ aggregation and Aβ-mediated neurotoxicity in vitro and in vivo were assessed. The results show that the special peptide not only inhibited the aggregation of Aβ into plaques, but it also alleviated Aβ-induced PC12 cell viability and apoptosis at appropriate concentrations as assessed by the cell counting kit-8 assay and propidium iodide staining. Moreover, the special peptide exhibited a protective effect against Aβ-induced learning and memory deficits in rats, as determined by the Morris water maze task. In conclusion, we selected a peptide that specifically binds Aβ1-10 and can modulate Aβ aggregation and Aβ-induced neuronal damage. This opens up possibilities for the development of a novel therapeutic approach for the treatment of AD.  相似文献   

15.
Senile plaque composed of amyloid-beta (Aβ) in the brain is one of the hallmarks of Alzheimer disease (AD). Removal of Aβ from the brain is the most important therapeutic strategy for AD. The solubility of Aβ is critical for its endocytosis, transcytosis and removal from the brain. Our recent study has found that the extracellular domain of p75NTR, the neurotrophin receptor, plays an important role in the solubility of Aβ and might be one of the endogenous mechanisms in the regulation of Aβ plaque formation. The physiologically shedded extracellular domain of p75NTR is able to inhibit Aβ aggregation and diasggregate preformed Aβ fibrils, while the full p75NTR expressed on neurites, endothelial cells and smooth muscle cells in blood-brain barrier (BBB) might initiate Aβ endocytosis and degradation, and/or remove Aβ from the brain via BBB. Understanding the roles of p75NTR in the solubility and clearance of Aβ may allow targetting p75NTR as a unique opportunity to develop therapeutic drugs for the prevention and treatment of AD.Key words: Alzheimer disease, amyloid-β, p75NTR, extracellular domain, blood-brain barrier, clearanceSenile plaque in the brain is one of the hallmarks of Alzheimer disease (AD). The main component of the senile plaques is amyloid-beta (Aβ), which is a metabolic product of amyloid precursor protein (APP). The steady-state level of Aβ in the normal brain is maintained by the balance between its production and clearance. However in the AD brain this balance is broken due to either over-production of Aβ or a reduction in Aβ clearance;1,2 thus Aβ accumulates in the brain and forms amyloid plaques which cause dementia and neurodegeneration in patients. Based on the Aβ hypothesis proposed a decade ago, Aβ plays a causal and pivotal role in the development of AD.3 Therefore, removal of Aβ from the brain is the most important therapeutic strategy for AD.4 To reach this goal, it is essential to understand how the Aβ metabolism is regulated in the AD brain. Despite the dramatic progress has been made in the understanding of how Aβ is produced from APP, the mechanisms of Aβ aggregation, metabolism and clearance from the brain remain unclear so far. Only 5% of AD (familial cases) is due to the over-production of Aβ because of mutations in the APP gene or in the APP processing enzymes, while the majority (95%) of so-called sporadic or late-onset AD (LOAD) are likely caused by dysfunctions in Aβ solubility or aggregation, endocytosis, degradation, transcytosis and removal.The solubility of Aβ is critical for its endocytosis, transcytosis and removal from the brain. In AD patients, one of the most consistent biomarkers found so far is the reduction of Aβ level in the cerebral spinal fluid (CSF).5 This is the most convincing evidence that there is a reduction in the solubility of Aβ and an increase in the Aβ aggregation and beta-sheet formation in AD patients. In sporadic cases of AD, the polymorphism of the Aβ-binding protein ApoE4 is highly associated with AD. It is known that other variants of ApoE proteins have a higher binding affinity to Aβ than ApoE4. It is likely that ApoE protein plays a critical role in the solubility of Aβ.6 The reduction in the Aβ binding ability of ApoE4 may reduce the solubility of Aβ. Thus ApoE protein may act on Aβ keeping it soluble and preventing its aggregation, and ApoE4 variant may reduce Aβ solubility and increase aggregation in the brain. It is not fully understood at this time, what other proteins that might regulate Aβ solubility and prevent its aggregation. Understanding the endogenous mechanism of suppressing Aβ aggregation and enhancing its removal will help to target Aβ for developing disease-modifying drugs.The neurotrophin receptor p75NTR may be such the protein which plays critical roles in the Aβ solubility and prevents Aβ aggregation and deposition in the brain. During the investigation into the functions of p75NTR in the development of AD in a recent study, we have found that the extracellular domain of p75NTR regulates the deposition of Aβ in a mouse model of AD.7 In p75NTR gene-knockout APPswe/PS1dE9 mice, soluble Aβ which reflects the steady-state level of Aβ production, is reduced in the brain. The serum Aβ level, which is associated with the level of soluble Aβ in the brain, is also reduced in p75NTR-knockout animals. In comparison, we found that p75NTR knockout increases the insoluble Aβ as reflected by the increased amyloid plaques and formic acid-extracted Aβ levels. Our results indicate that p75NTR may play critical roles in the solubility of Aβ in the brain of AD mice. To test the hypothesis, we have made recombinant extracellular domain-fused with human immunoglobulin Fc fragment and tested its effects in the solubility of Aβ in vitro. We have found that the recombinant extracellular domain of p75NTR has a very strong effect on the solubility of Aβ. It reduces Aβ oligomerization and fibrillization, solubilizes fibrilized Aβ. Most interestingly, when injected into the hippocampus of AD mice, it reduces the number and size of Aβ plaques. Thus, we have clearly demonstrated that the extracellular domain plays an important role in the solubility of Aβ and might be one of endogenous mechanisms in the regulation of Aβ plaque formation in patients.How might p75NTR play a role in the Aβ plaque formation or deposition in AD brain? One of the features of the Aβ pathology is that Aβ exclusively deposits in the neocortex, hippocampus and vessel walls. These areas are also the projection area of p75NTR positive fibers. The close anatomical association between p75NTR expression and Aβ deposition strongly suggests that p75NTR is involved in the initiation and development of Aβ deposition in the brain. Interestingly, we have observed there is a spatial relationship between p75NTR fibers and Aβ plaques in the brain of AD mice. We have found that p75NTR positive neurites locates in the center of compact senile plaques, while p75NTR negative degenerative neurites locate in the outer region of Aβ plaques.7 This phenomenon suggests that p75NTR positive neurodegenerative fibers may play a seeding role to initiate the Aβ aggregation and plaque formation. It is known that Aβ can bind to the extracellular domain of p75NTR.8 Normally, Aβ-bound p75NTR is likely endocytosed and degraded in the lysosomes, but the degenerated neurites may be abnormal in the endocytosis of the Aβ-p75NTR complex. Thus Aβ which binds to p75NTR on the cell surface may act as seeds to initiate the cascade of Aβ aggregation and beta-sheet formation.On the other hand, the extracellular domain of p75NTR after enzymatic shedding may play a different role than the membranous p75NTR. It is known that the p75NTR extracellular domain is physiologically shedded by TACE to generate a soluble and diffusible factor.9 The physiological function of the shedded diffusible extracellular domain of p75NTR remains unknown. During the aging process and during the development of AD, p75NTR expression is upregulated,10,11 and presumably the production of the diffusible extracellar domain of p75NTR is also increased. The increased extracellular domain of the p75NTR is likely a critical factor to maintain the solubility of Aβ, acting in concert with ApoE and other Aβ-binding proteins such as low-density lipoprotein receptor-related protein-1 (LRP1).12 Indeed, in our animal experiment, we have found that knockout of p75NTR significantly increases the insoluble Aβ, even though the production of Aβ is reduced in p75NTR knockout neurons.7 Our data have provided strong evidence that the brain Aβ deposition and amyloid plaque formation may be mainly due to the decreased Aβ solubility or decreased Aβ clearance.The solubility of Aβ goes hand in hand with the clearance of Aβ because only the solubilized Aβ can be endocytosed and degraded in lysosomes by neurons, microglia and astrocytes, and be transported from the brain to the blood for degradation and clearance.4 Whether p75NTR plays any roles in the endocytosis of Aβ and degradation is unclear. Our data of increased Aβ deposition in the brain of p75NTR knockout mice may also be explained by the decreased endocytosis of Aβ via p75NTR. It is likely that p75NTR may play a role in Aβ endocytosis, as p75NTR is a receptor of Aβ and mediates its toxicity in neurons.8 p75NTR ligands can trigger a clathrin-dependent endocytosis of both p75NTR and its ligands.13 If p75NTR normally mediates Aβ endocytosis, the knockout of p75NTR would reduce the removal of Aβ by endocytosis and lead to the increased deposition in the brain.Normally, p75NTR is also expressed in endothelial cells and smooth muscle cells of blood vessels, vessel-innervating sympathetic and sensory neurons and choroid plexus in the brain.14,15 This raises the possibility that p75NTR within blood vessels may play a role in transport and trafficking of Aβ from the brain to the blood. It is well known that LRP1 plays important roles in the transport and transcytosis of Aβ and clears Aβ from the brain.12 LRP1 on the cell-surface of the blood-brain barrier (BBB) can bind, transcytose and transport Aβ from the brain to the blood. p75NTR expressed on the BBB may play similar roles in the removal of Aβ in a similar manner to the Aβ binding proteins, LRP1 and G-glycoprotein, expressed on the BBB. Future studies should test roles of p75NTR in the endocytosis, transcytosis and clearance of Aβ by different cells such as neurons, endothelial cells and smooth muscle cells. The levels of shedded diffusible p75NTR in the brain and blood of AD patients should be determined as a biomarker and correlated with Aβ levels or Aβ plaques to reveal its potential roles in the solubility and clearance of Aβ in AD patients.In summary, our studies have provided strong evidence that p75NTR is an essential molecule to keep the solubility of Aβ during development of AD. We speculate that p75NTR might also play many vital roles in removing Aβ from brain (Fig. 1). However, it is still far from certain how p75NTR regulates the solubility of Aβ and suppresses its deposition in the AD brain. Understanding the roles of p75NTR in the solubility and clearance of Aβ may help using p75NTR as a target to develop therapeutic drugs for the prevention and treatment of AD.Open in a separate windowFigure 1Schematic diagram depicting functions of p75NTR in Aβ solubility and clearance. p75NTR locates on the neurites, epithelial cells and smooth muscle cells of the blood-brain barrier (BBB). Binding of Aβ to p75NTR on neurites may initiate the endocytosis of Aβ and its degradation in the neurons. Shedding of p75NTR from the cell membrane releases the soluble extracellular domain (p75NTR-ECD), which is capable of inhibiting Aβ aggregation and disaggregating preformed Aβ fibrils. p75NTR at BBB might be able to transport Aβ from the brain to blood.  相似文献   

16.
Puccio S  Chu J  Praticò D 《PloS one》2011,6(1):e15163

Background

Numerous studies show that high circulating level of glucocorticosteroids is a biochemical characteristic of Alzheimer''s disease (AD). These stress hormones can increase the amount of AD-like pathology in animal models of the disease. Since they also up-regulate the 5-Lipoxygenase (5-LO), an enzyme which modulates amyloid beta (Aβ) formation, in the present paper we tested the hypothesis that this enzymatic pathway is involved in the glucocorticoid-induced pro-amyloidotic effect.

Methodology/Principal Findings

Incubation of neuronal cells with dexamethasone resulted in a significant increase in 5-LO activity and Aβ formation. By contrast, pharmacological inhibition of 5-LO prevented the dexamethasone-dependent increase in Aβ levels. Mouse embryonic fibroblasts responded with a significant increase in Aβ formation after dexamethasone challenge. However, this effect was abolished when dexamethasone was incubated with fibroblasts genetically deficient for 5-LO. No difference in the glucocorticoid receptor levels was observed between the two groups. Finally, treatment of wild type mice with dexamethasone resulted in a significant increase in endogenous brain Aβ levels, which was prevented in mice genetically lacking 5-LO.

Conclusions

These findings suggest that 5-LO plays a functional role in the glucocorticoid-induced brain AD-like amyloid pathology.  相似文献   

17.
Drew SC  Masters CL  Barnham KJ 《PloS one》2010,5(12):e15875

Background

The amyloid-β (Aβ) peptide is the primary component of the extracellular senile plaques characteristic of Alzheimer''s disease (AD). The metals hypothesis implicates redox-active copper ions in the pathogenesis of AD and the Cu2+ coordination of various Aβ peptides has been widely studied. A number of disease-associated modifications involving the first 3 residues are known, including isomerisation, mutation, truncation and cyclisation, but are yet to be characterised in detail. In particular, Aβ in plaques contain a significant amount of truncated pyroglutamate species, which appear to correlate with disease progression.

Methodology/Principal Findings

We previously characterised three Cu2+/Aβ1–16 coordination modes in the physiological pH range that involve the first two residues. Based upon our finding that the carbonyl of Ala2 is a Cu2+ ligand, here we speculate on a hypothetical Cu2+-mediated intramolecular cleavage mechanism as a source of truncations beginning at residue 3. Using EPR spectroscopy and site-specific isotopic labelling, we have also examined four Aβ peptides with biologically relevant N-terminal modifications, Aβ1[isoAsp]–16, Aβ1–16(A2V), Aβ3–16 and Aβ3[pE]–16. The recessive A2V mutation preserved the first coordination sphere of Cu2+/Aβ, but altered the outer coordination sphere. Isomerisation of Asp1 produced a single dominant species involving a stable 5-membered Cu2+ chelate at the amino terminus. The Aβ3–16 and Aβ3[pE]–16 peptides both exhibited an equilibrium between two Cu2+ coordination modes between pH 6–9 with nominally the same first coordination sphere, but with a dramatically different pH dependence arising from differences in H-bonding interactions at the N-terminus.

Conclusions/Significance

N-terminal modifications significantly influence the Cu2+ coordination of Aβ, which may be critical for alterations in aggregation propensity, redox-activity, resistance to degradation and the generation of the Aβ3–× (× = 40/42) precursor of disease-associated Aβ3[pE]–x species.  相似文献   

18.
Insulin-degrading enzyme (IDE) is a conserved Zn2+metalloendopeptidase involved in insulin degradation and in the maintenance of brain steady-state levels of amyloid β peptide (Aβ) of Alzheimer''s disease (AD). Our recent demonstration that IDE and Aβ are capable of forming a stoichiometric and extremely stable complex raises several intriguing possibilities regarding the role of this unique protein-peptide interaction in physiological and pathological conditions. These include a protective cellular function of IDE as a “dead-end chaperone” alternative to its proteolytic activity and the potential impact of the irreversible binding of Aβ to IDE upon its role as a varicella zoster virus receptor. In a pathological context, the implications for insulin signaling and its relationship to AD pathogenesis are discussed. Moreover, our findings warrant further research regarding a possible general and novel interaction between amyloidogenic peptides and other Zn2+metallopeptidases with an IDE-like fold and a substrate conformation-dependent recognition mechanism.Key words: amyloid, insulin-degrading enzyme, peptides, alzheimer''s disease, irreversible binding, metalloproteases  相似文献   

19.
Brain amyloid-β (Aβ) peptide accumulation and aggregation are critical events in the pathogenesis of Alzheimer disease. Increasing evidence has demonstrated that LRP1 is involved in Alzheimer disease pathogenesis. The physiological ligands of LRP1, including apoE, play significant roles in the cellular clearance of Aβ. The receptor-associated protein (RAP) is a specialized chaperone for members of the low density lipoprotein receptor family. RAP shares structural and receptor-binding properties with apoE. Here, we show that RAP binds to both Aβ40 and Aβ42 in a concentration-dependent manner and forms complexes with them. Fluorescence-activated cell sorter analysis showed that RAP significantly enhances the cellular internalization of Aβ in different cell types, including brain vascular smooth muscle, neuroblastoma, glioblastoma, and Chinese hamster ovary cells. This effect of RAP was confirmed by fluorescence microscopy and enzyme-linked immunosorbent assay. RAP binds to both LRP1 and heparin; however, the ability of RAP to enhance Aβ cellular uptake was blocked by heparin and heparinase treatment but not by LRP1 deficiency. Furthermore, the effects of RAP were significantly decreased in heparan sulfate proteoglycan-deficient Chinese hamster ovary cells. Our findings reveal that RAP is a novel Aβ-binding protein that promotes cellular internalization of Aβ.  相似文献   

20.
Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against β-amyloid (Aβ) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the β-secretase (BACE1) function and β-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that ∼60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Aβ secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized γ-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced β-amyloidogenic processing of APP and ultimately increased Aβ production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased β-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号