首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA sequence data were obtained for the gene encoding the large subunit of RUBISCO (rbcL) from 26 strains of Spirogyra and seven of Sirogonium, using as outgroups 10 genera in the Zygnematales and Desmidiales (Closterium, Cosmarium, Cylindrocystis, Gonatozygon, Mesotaenium, Netrium, Penium, Zygnema, Zygnemopsis, Zygogonium). Sequence data were analyzed using maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI), with bootstrap replication (MP, ML) and posterior probabilities (BI) as measures of support. MP, ML, and BI analyses of the rbcL data strongly support a single clade containing Spirogyra and Sirogonium. The Spirogyra taxa are monophyletic, with the exception of Spirogyra maxima (Hassall) Wittrock, which is nested within a clade with Sirogonium and shares with them the characters of loosely spiraled chloroplasts (<1 complete turn per cell) and anisogamy of gametangial cells; S. maxima differs from Sirogonium in displaying well‐defined conjugation tubes rather than a tubeless connection involving bending (genuflection) of filaments. The ML and BI analyses place this Sirogonium/Spirogyra maxima clade sister to the remaining Spirogyra. Morphological differences among strains of Spirogyra grouped together on the basis of rbcL data, including laboratory strains derived from clonal cultures (Spirogyra communis, S. pratensis), indicate that some characters (filament width, chloroplast number) used in the traditional taxonomy of this group are poor measures of species identity. However, some characters such as replicate end walls and loose spiraling of chloroplasts may be synapomorphies for Spirogyra clades.  相似文献   

2.
Nuclear‐encoded small subunit rDNA, 1506 group I intron, and internal transcribed spacer sequences were obtained from 39 strains representing five core desmid genera, Staurastrum, Staurodesmus Teil., Cosmarium Corda ex Ralfs, Xanthidium Ehr. ex Ralfs, and Euastrum Ehr. ex Ralfs (Desmidiaceae, Zygnematophyceae), and used individually and concatenated to assess phylogenetic relationships between putatively allied members of the family. To identify positional homology between divergent noncoding sequences, secondary structure models were generated and their reliability assessed by screening the alignment for compensating base changes. The phylogeny based on coding and noncoding sequence comparisons confidently resolved a monophyletic core of the genus Staurastrum but also revealed the artificial nature of the traditional genus. Twenty distinct species representing a wide range of morphotypes of Staurastrum formed a strongly supported generic clade that was further split into three well‐resolved lineages. The phylogenetic relationships revealed within Staurastrum were in conflict with all previous formal or informal classifications of the genus. The genera Staurodesmus and Cosmarium were shown to be highly polyphyletic, and some morphologically similar taxa displayed high sequence divergence that exceeded generic boundaries. Apparently, the taxonomic significance of some morphological characters in Staurastrum and other desmid genera has been greatly overestimated.  相似文献   

3.
Species of the heterotrophic green microalgal genus Prototheca and related taxa were phylogenetically analyzed based on the nuclear small subunit (SSU) and the 5′ end of the large subunit (LSU) rRNA gene (rDNA) sequences. We propose restricting the genus Prototheca to the four species: P. moriformis Krüger, P. stagnora (Cooke) Pore, P. ulmea Pore, and P. zopfii Krüger. The main diagnostic feature of these taxa is the absence of growth on trehalose.Of these, it was suggested that P. moriformis should be merged into P. zopfii; P. moriformis and three varieties of P. zopfii constituted a paraphyletic assemblage with estimated short evolutionary distances. The trehalose‐assimilating strains (Prototheca wickerhamii Tubaki et Soneda strains and Auxenochlorella protothecoides (Krüger) Kalina et Pun?ochá?ová SAG 211‐7a), together with an invertebrate pathogen Helicosporidium sp., diverged before the radiation of the four species of Prototheca in the SSU rDNA and composite (SSU rDNA plus LSU rDNA) analyses. Comparison between the results from physiological data in this work (fermentative pattern) and those described earlier (growth requirements) lead us to propose a hypothesis that the phenotypic variation, which did not represent diagnostic characters for species delimitation, may reflect the history of genetic diversification within the genus Prototheca as inferred from rDNA sequence characters.  相似文献   

4.
The classical athecate dinoflagellate genera (Amphidinium, Gymnodinium, Gyrodinium) have long been recognized to be polyphyletic. Amphidinium sensu lato is the most diverse of all marine benthic dinoflagellate genera; however, following the redefinition of this genus ~100 species remain now of uncertain or unknown generic affiliation. In an effort to improve our taxonomic and phylogenetic understanding of one of these species, namely Amphidinium semilunatum, we re‐investigated organisms from several distant sites around the world using light and scanning electron microscopy and molecular phylogenetic methods. Our results enabled us to describe this species within a new heterotrophic genus, Ankistrodinium. Cells of A. semilunatum were strongly laterally flattened, rounded‐quadrangular to oval in lateral view, and possessed a small asymmetrical epicone. The sulcus was wide and characteristically deeply incised on the hypocone running around the antapex and reaching the dorsal side. The straight acrobase with hook‐shaped end started at the sulcal extension and continued onto the epicone. The molecular phylogenetic results clearly showed that A. semilunatum is a distinct taxon and is only distantly related to species within the genus Amphidinium sensu stricto. The nearest sister group to Ankistrodinium could not be reliably determined.  相似文献   

5.
A new marine benthic Prorocentrum species from sandy habitats of South Brittany (northwestern France), P. consutum sp. nov., is described using LM and SEM and molecular phylogenetic analyses. Cells have a subcircular to broadly ovoid shape and are plainly flattened. They are 57–61 μm long and 52–55 μm wide. A central pyrenoid is present, and the kidney‐shaped nucleus is positioned in the posterior region. In right valve view, the periflagellar area is deeply excavated, and the left valve forms a prominent apical ridge. The periflagellar area consists of nine platelets, and a small narrow collar is present around the flagellar pore. The ornamentation of this new species is very peculiar and is characterized by a ring of round areolae located at the periphery of the valves, each areola containing three or four pores. Apart from this ring of areolae, the cell surface is smooth and with scattered pores. Pores are not present in the center of the right or left valve. The intercalary band is generally narrow and faintly striated horizontally. The molecular phylogenetic position of P. consutum sp. nov. was inferred using SSU and LSU rDNA. In both analyses, this species branched with high support in the clade comprising species with a symmetric shape and appeared to be a sister group to that formed by P. lima and other tropical benthic species, such as P. arenarium, P. belizeanum, P. hoffmannianum, and P. maculosum.  相似文献   

6.
Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS‐1, and ITS‐2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium‐like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.  相似文献   

7.
On the basis of comparative morphology and phylogenetic analyses of rbcL and LSU rDNA sequence data, a new genus, Gayliella gen. nov., is proposed to accommodate the Ceramium flaccidum complex (C. flaccidum, C. byssoideum, C. gracillimum var. byssoideum, and C. taylorii), C. fimbriatum, and a previously undescribed species from Australia. C. transversale is reinstated and recognized as a distinct species. Through this study, G. flaccida (Kützing) comb. nov., G. transversalis (Collins et Hervey) comb. nov., G. fimbriata (Setchell et N. L. Gardner) comb. nov., G. taylorii comb. nov., G. mazoyerae sp. nov., and G. womersleyi sp. nov. are based on detailed comparative morphology. The species referred to as C. flaccidum and C. dawsonii from Brazil also belong to the new genus. Comparison of Gayliella with Ceramium shows that it differs from the latter by having an alternate branching pattern; three cortical initials per periaxial cell, of which the third is directed basipetally and divides horizontally; and unicellular rhizoids produced from periaxial cells. Our phylogenetic analyses of rbcL and LSU rDNA gene sequence data confirm that Gayliella gen. nov. represents a monophyletic clade distinct from most Ceramium species including the type species, C. virgatum. We also transfer C. recticorticum to the new genus Gayliella.  相似文献   

8.
Two new species of Gracilariopsis from the Indian Ocean are proposed—Gracilariopsis (Gp.) mclachlanii Buriyo, Bellorin et M. C. Oliveira sp. nov. from Tanzania and Gracilariopsis persica Bellorin, Sohrabipour et E. C. Oliveira sp. nov. from Iran—based on morphology and DNA sequence data (rbcL gene and SSU rDNA). Both species fit the typical features of Gracilariopsis: axes cylindrical throughout, freely and loosely ramified up to four orders, with an abrupt transition in cell size from medulla to cortex, cystocarps lacking tubular nutritive cells and superficial spermatangia. Nucleotide sequence comparisons of rbcL and SSU rDNA placed both species into the Gracilariopsis clade as distinct species from all the accepted species for this genus, forming a deeply divergent lineage together with some species from the Pacific. The new species are very difficult to distinguish on morphological grounds from other species of Gracilariopsis, stressing the importance of homologous molecular marker comparisons for the species recognition in this character‐poor genus.  相似文献   

9.
We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.  相似文献   

10.
A previously unknown species of kelp was collected on Kagamil Island, Aleutian Islands. The species can be easily distinguished from any known laminarialean alga: the erect sporophytic thallus is composed of a thin lanceolate blade attaining ~2 m in height and ~0.50 m in width, without midrib, and the edge of the blade at the transition zone is thickened to form a V‐shape; the stipe is solid and flattened, slightly translucent, attaining ~1 m in length; the holdfast is semidiscoidal and up to 0.15 m in diameter. Anatomically, the blade has the typical trumpet‐shaped hyphae characteristic of the Chordaceae and derived foliose laminarialean species (i.e., Alariaceae/Laminariaceae/Lessoniaceae). No hair pits or mucilaginous structures were observed on the blade or stipe. No fertile sporophytes were collected, but abundant juvenile sporophytes were observed in the field. In the molecular phylogenetic analyses using chloroplast rbcL gene, nuclear ITS1‐5.8S‐ITS2 rDNA, and mitochondria nad6 DNA sequences, the new species (Aureophycus aleuticus gen. et sp. nov.) showed a closer relationship with Alariaceae of conventional taxonomy, or the “Group 1” clade of Lane et al. (2006) including Alaria and related taxa than with other groups, although the species was not clearly included in the group. Aureophycus may be a key species in elucidating the evolution of the Alariaceae within the Laminariales. Because of the lack of information on reproductive organs and insufficient resolution of the molecular analyses, we refrain from assigning the new species to a family, but we place the new species in a new genus in the Laminariales.  相似文献   

11.
Species currently classified within the cyanobacterial genus Microcoleus were determined to fall into two distinct clades in a 16S rDNA phylogeny, one containing taxa within the Oscillatoriaceae, the other containing taxa within the Phormidiaceae. The two lineages were confirmed in an analysis of the 16S–23S internal transcribed spacer (ITS) region sequences and secondary structures. The type species for Microcoleus is M. vaginatus Gomont, and this taxon belongs in the Oscillatoriaceae. Consequently, Microcoleus taxa in the Phormidiaceae must be placed in separate genera, and we propose the new genus Coleofasciculus to contain marine taxa currently placed in Microcoleus. The type species for Coleofasciculus is the well‐studied and widespread marine mat‐forming species Microcoleus chthonoplastes (Mert.) Zanardini ex Gomont. Other characters separating the two families include type of cell division and thylakoid structure.  相似文献   

12.
The name Peridinium palatinum Lauterborn currently designates a freshwater peridinioid with 13 epithecal and six cingular plates, and no apical pore complex. Freshwater dinoflagellate floras classify it in Peridinium group palatinum together with P. pseudolaeve M. Lefèvre. General ultrastructure, flagellar apparatus, and pusular components of P. palatinum were examined by serial section TEM and compared to P. cinctum (O. F. Müll.) Ehrenb. and Peridiniopsis borgei Lemmerm., respectively, types of Peridinium and Peridiniopsis. Partial LSU rDNA sequences from P. palatinum, P. pseudolaeve and several peridinioids, woloszynskioids, gymnodinioids, and other dinoflagellates were used for a phylogenetic analysis. General morphology and tabulation of taxa in group palatinum were characterized by SEM. Differences in plate numbers, affecting both the epitheca and the cingulum, combine with differences in plate ornamentation and a suite of internal cell features to suggest a generic‐level distinction between Peridinium group palatinum and typical Peridinium. The branching pattern of the phylogenetic tree is compatible with this conclusion, although with low support from bootstrap values and posterior probabilities, as are sequence divergences estimated between species in group palatinum, and typical Peridinium and Peridiniopsis. Palatinus nov. gen. is proposed with the new combinations Palatinus apiculatus nov. comb. (type species; syn. Peridinium palatinum), P. apiculatus var. laevis nov. comb., and P. pseudolaevis nov. comb. Distinctive characters for Palatinus include a smooth or slightly granulate, but not areolate, plate surface, a large central pyrenoid penetrated by cytoplasmic channels and radiating into chloroplast lobes, and the presence of a peduncle‐homologous microtubular strand. Palatinus cells exit the theca through the antapical‐postcingular area.  相似文献   

13.
Morphological studies of 16 strains belonging to the genus Monomorphina revealed a single, parietal, orbicular chloroplast in their cells. The chloroplast has a tendency to be perforated and disintegrates in aging populations and thus may appear to be many chloroplasts under the light microscope. A single chloroplast in the cells of Cryptoglena skujae is also parietally located and highly perforated. It never forms a globular and closed structure, but is open from the side of the furrow, resembling the letter C. We have verified the Monomorphina pyrum group (M. pyrum–like) on the basis of phylogenetic analysis of SSU rDNA and morphological data. The strain CCAC 0093 (misidentified as M. reeuwykiana) diverges first on the SSU rDNA phylogenetic tree. The rest of the M. pyrum–like strains form a tight cluster, subdivided into several smaller ones. Because morphological differences between the M. pyrum–like strains (including the strain CCAC 0093) do not conform to the tree topology, we suggest that they all (except the strain CCAC 0093) belong to M. pyrum. We designate a new species, M. pseudopyrum, for the strain CCAC 0093, solely on the basis of molecular characters. We also suggest that M. reeuwykiana and similar species should stay in Phacus and Lepocinclis unless detailed molecular and morphological studies show otherwise. Emended diagnoses of the genera Monomorphina and Cryptoglena and the species M. aenigmatica are also proposed, as well as the delimitation of an epitype for M. pyrum, the type species for the genus Monomorphina.  相似文献   

14.
Skeletonema costatum (Grev.) Cleve emend. Zingone et Sarno and S. grevillei Sarno et Zingone were known only from the type material collected from Hong Kong waters more than a century ago. Both species have now been collected as live material, and their morphology and phylogenetic position are investigated in this study. Eight Skeletonema strains isolated from Florida, USA; Uruguay; and Brazil are attributed to S. costatum, while one strain from Oman is ascribed to S. grevillei based on morphological similarity to the type material of these species. In addition, a new Skeletonema species, S. ardens Sarno et Zingone, is described for a strain from Singapore and two from northern Australian waters. Skeletonema ardens has terminal fultoportula processes ending in a tapered, undulate protrusion and long intercalary fultoportulae with 1:1 junctions. The rimoportula of terminal valves is located at the margin of the valve face. No major morphological variations were observed within S. grevillei and S. ardens along a salinity gradient, whereas in S. costatum, the processes shortened and the valves came into close contact at low salinities, as already described for S. subsalsum (Cleve) Bethge. Consistent with their morphology, Skeletonema costatum and Skeletonema subsalsum also had similar rDNA sequences. Skeletonema grevillei and S. ardens were distinct in the large subunit (LSU) phylogeny. Skeletonema ardens exhibited consistent intraspecific genetic differences in both the LSU and small subunit (SSU) rDNA.  相似文献   

15.
16.
Previous studies using the nuclear SSU rDNA and partial LSU rDNA have demonstrated that the euglenoid loricate taxa form a monophyletic clade within the photosynthetic euglenoid lineage. It was unclear, however, whether the loricate genera Trachelomonas and Strombomonas were monophyletic. In order to determine the relationships among the loricate taxa, SSU and LSU nuclear rDNA sequences were obtained for eight Strombomonas and 25 Trachelomonas strains and combined in a multigene phylogenetic analysis. Conserved regions of the aligned data set were used to generate maximum‐likelihood (ML) and Bayesian phylogenies. Both methods recovered a strongly supported monophyletic loricate clade with Strombomonas and Trachelomonas species separated into two sister clades. Taxa in the genus Strombomonas sorted into three subclades. Within the genus Trachelomonas, five strongly supported subclades were recovered in all analyses. Key morphological features could be attributed to each of the subclades, with the major separation being that all of the spine‐bearing taxa were located in two sister subclades, while the more rounded, spineless taxa formed the remaining three subclades. The separation of genera and subclades was supported by 42 distinct molecular signatures (33 in Trachelomonas and nine in Strombomonas). The morphological and molecular data supported the retention of Trachelomonas and Strombomonas as separate loricate genera.  相似文献   

17.
We newly sequenced the nuclear-encoded small subunit (SSU) rDNA coding region for 21 taxa of the genus Closterium. The new sequences were integrated into an alignment with 13 known sequences of conjugating green algae representing six traditional families (i.e. Zygnemataceae, Mesotaeniaceae, Gonatozygaceae, Peniaceae, Closteriaceae, and Desmidiaceae) and five known charophycean sequences as outgroups. Both maximum likelihood and maximum parsimony analyses supported with high bootstrap values one large clade containing all placoderm desmids (Desmidiales). All the Closterium taxa formed one clade with 100% bootstrap support, indicating their monophyly, but not paraphyly, as suggested earlier. As to the taxa within the genus Closterium , we found two clades of morphologically closely related taxa in both maximum likelihood and maximum parsimony trees. They corresponded to the C. calosporum species complex and the C. moniliferum-ehrenbergii species complex. It is of particular interest that the homothallic entity of C. moniliferum v. moniliferum was distinguished from and ancestral to all other entities of the C. moniliferum-ehrenbergii species complex. Superimposing all 50 charophycean sequences on the higher order SSU rRNA structure model of Closterium , we investigated degrees of nucleotide conservation at a given position in the nucleotide sequence. A characteristic "signature" structure to the genus Closterium was found as an additional helix at the tip of V1 region. In addition, eight base deletions at the tip of helix 10 were found to be characteristic of the C. calosporum species complex, C. gracile , C. incurvum , C. pleurodermatum , and C. pusillum v. maius. These taxa formed one clade with an 82% bootstrap value in maximum parsimony analysis.  相似文献   

18.
Ceramium inkyuii sp. nov. is newly described based on samples collected from the east coast of Korea and compared with similar species such as C. paniculatum and C. tenerrimum. The new species is characterized by pseudo‐dichotomously branched thalli with a twist in the upper part, a single row of spines on the abaxial side, strongly inrolled apices, and the presence of gland cells. In contrast, C. paniculatum has alternate branches and lacks gland cells, and C. tenerrimum is spineless and also lacks gland cells. Ceramium inkyuii was observed to be an annual species producing tetrasporangia in the spring to summer and cystocarps in the fall. Plastid‐encoded rbcL and nuclear small subunit (SSU) rDNA sequences were determined in four samples of C. inkyuii from different locations and six samples of four putative relatives. All four C. inkyuii replicates from three different locations had identical sequences of each gene, and the interspecific sequence divergences were enough to warrant its natural entity. The phylogenies of the rbcL and SSU rDNA sequences also indicate the monophyly of C. inkyuii. The spinous C. inkyuii was more closely related to the spineless C. tenerrimum than to the spinous C. paniculatum.  相似文献   

19.
A new species of the dinoflagellate genus Alexandrium, A. tamutum sp. nov., is described based on the results of morphological and phylogenetic studies carried out on strains isolated from two sites in the Mediterranean Sea: the Gulf of Trieste (northern Adriatic Sea) and the Gulf of Naples (central Tyrrhenian Sea). Vegetative cells were examined in LM and SEM, and resting cysts were obtained by crossing strains of opposite mating type. Alexandrium tamutum is a small‐sized species, resembling A. minutum in its small size, the rounded‐elliptical shape and the morphology of its cyst. The main diagnostic character of the new species is a relatively wide and large sixth precingular plate (6″), whereas that of A. minutum is much narrower and smaller. Contrary to A. minutum, A. tamutum strains did not produce paralytic shellfish poisoning toxins. Phylogenies inferred from the nuclear small subunit rDNA and the D1/D2 domains of the large subunit nuclear rDNA of five strains of A. tamutum and numerous strains of other Alexandrium species showed that A. tamutum strains clustered in a well‐supported clade, distinct from A. minutum.  相似文献   

20.
The phenology, life history, ultrastructure of reproductive structures, and molecular phylogeny using rbcL and rDNA (5.8S, internal transcribed spacer 2, and partial 26S) gene sequences of Stschapovia flagellaris, endemic to the northwestern Pacific Ocean, were studied. This species was first classified in the order Delamareales together with Delamarea, Coelocladia, and Cladothele. Those three genera, however, were later transferred to Dictyosiphonales, whereas the systematic position of Stschapovia remained unclear. At Abashiri, Hokkaido, Japan, the species regenerated by forming a new erect thallus from a perennial crustose holdfast or by presumably parthenogenetic development of eggs released from the erect thallus. There was no alternation of generations. In winter, the monoecious erect thallus formed reproductive structures (i.e. plurilocular antheridia and oogonia) in the thickened part of the thallus. Sperm had a chloroplast with an eyespot and a long anterior and short posterior flagellum. Eggs contained numerous disc‐shaped chloroplasts, physodes, and vacuoles. Neither sexual attraction of the presumptive sperm by eggs nor their sexual fusion was observed. Molecular phylogenetic analyses revealed the closest phylogenetic relationship between Stschapovia and Halosiphonaceae, and they grouped with Phyllariaceae and Tilopteridaceae (Tilopteridales s. s.). Stschapovia and Tilopteridaceae have several important morphological similarities: chloroplasts lacking pyrenoids, lack of sexual reproduction despite the release of obvious sperm, occurrence of monoecious gametophytes, and similarity in the early developmental pattern of the erect thallus. In conclusion, we propose the establishment of the new family Stschapoviaceae to accommodate Stschapovia and the placement of the family in the order Tilopteridales together with Tilopteridaceae, Halosiphonaceae, and Phyllariaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号