首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(S)-Blebbistatin is a micromolar myosin II ATPase inhibitor that is extensively used in research. In search of analogs with improved potency, we have synthesized for the first time C-ring modified analogs. We introduced hydroxymethyl or allyloxymethyl functionalities in search of additional favorable interactions and a more optimal filling of the binding pocket. Unfortunately, the resulting compounds did not significantly inhibit the ATPase activity of rabbit skeletal-muscle myosin II. This and earlier reports suggest that rational design of potent myosin II inhibitors based on the architecture of the blebbistatin binding pocket is an ineffective strategy.  相似文献   

2.
By using functionality inversion approach, we identified a new scaffold containing (S)-α-phenyl-γ-amino butanamide as CCR5 antagonists derived from the 1,3-propanediamine carboxamide pharmacophore protocol. The (2S)-2-phenyl-4-(8-aza-bicyclo[3.2.1]octan-8-yl)-butanamide derivatives display significantly high potency to antagonize CCR5 receptor with nanomolar IC50 values.  相似文献   

3.
Nicotinamide phosphoribosyltransferase is a key metabolic enzyme that is a potential target for oncology. Utilizing publicly available crystal structures of NAMPT and in silico docking of our internal compound library, a NAMPT inhibitor, 1, obtained from a phenotypic screening effort was replaced with a more synthetically tractable scaffold. This compound then provided an excellent foundation for further optimization using crystallography driven structure based drug design. From this approach, two key motifs were identified, the (S,S) cyclopropyl carboxamide and the (S)-1-N-phenylethylamide that endowed compounds with excellent cell based potency. As exemplified by compound 27e such compounds could be useful tools to explore NAMPT biology in vivo.  相似文献   

4.
A library of variously decorated N-phenyl secondary sulphonamides featuring the bicyclic tetrahydroquinazole scaffold was synthesised and biologically evaluated for their inhibitory activity against human carbonic anhydrase (hCA) I, II, IV, and IX. Of note, several compounds were identified showing submicromolar potency and excellent selectivity for the tumour-related hCA IX isoform. Structure–activity relationship data attained for various substitutions were rationalised by molecular modelling studies in terms of both inhibitory activity and selectivity.  相似文献   

5.
Kamolonol (7-[[(1R,2R,4R,4aS,5R,8aS)-4-hydroxy-1,2,4a,5-tetramethyl-6-oxo-3,4,5,7,8,8a-hexahydro-2H-naphthalen-1-yl]methoxy]chromen-2-one) is a sesquiterpene coumarin and an active component of gum extracts from Ferulaassafoetida. The aim of this study was to investigate the anti-fibrotic and anti-cellular hypertrophic effects of kamolonol, and further to explore its possible mechanism. Kamolonol (3–30 μM) significantly inhibited stress fiber formation induced by angiotensin II (Ang II) in rat heart-derived H9c2 cells. Furthermore, kamolonol (3–30 μM) showed a potent inhibitory effect on Ang II-induced cellular hypertrophy in H9c2 cells. Next, a Rho-associated kinase (ROCK) activity was measured because actin stress fiber formation and/or cellular hypertrophy are usually induced by the activation of ROCK. Rho-associated kinase 2 (ROCK2) studies using a time-resolved fluorescence resonance energy transfer (TR-FRET) showed that kamolonol possesses a potent ROCK2 inhibitory activity with IC50 values of 2.27 μM, and has an ATP-competitive inhibitory mode. In validation study, pretreatment of kamolonol (3–30 μM) for 2 h decreased the Ang II-induced phosphorylation of myosin phosphatase 1 (MYPT1) and myosin light chain 2 (MLC2). Taken together, these results indicate that kamolonol suppresses Ang II-induced stress fiber formation and cellular hypertrophy, and propose that one mechanism underlying these anti-fibrotic and anti-cellular hypertrophic effects involves inhibition of the ROCK-MLC pathway.  相似文献   

6.
N-type calcium channels represent a promising target for the treatment of neuropathic pain. The selective N-type calcium channel blocker ziconotide ameliorates severe chronic pain but has a narrow therapeutic window and requires intrathecal administration. We identified tetrahydroisoquinoline derivative 1a as a novel potent N-type calcium channel blocker. However, this compound also exhibited potent inhibitory activity against hERG channels. Structural optimizations led to identification of (1S)-(1-cyclohexyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-{[(1-hydroxycyclohexyl)methyl]amino}ethanone ((S)-1h), which exhibited high selectivity for hERG channels while retaining potency for N-type calcium channel inhibition. (S)-1h went on to demonstrate in vivo efficacy as an orally available N-type calcium channel blocker in a rat spinal nerve ligation model of neuropathic pain.  相似文献   

7.
An octahydroisochromene scaffold has been introduced into a known SARS 3CL protease inhibitor as a novel hydrophobic core to interact with the S2 pocket of the protease. An alkyl or aryl substituent was also introduced at the 1-position of the octahydroisochromene scaffold and expected to introduce additional interactions with the protease. Sharpless–Katsuki asymmetric epoxidation and Sharpless asymmetric dihydroxylation were employed to construct the octahydroisochromene scaffold. The introductions of the P1 site His-al and the substituent at 1-position was achieved using successive reductive amination reactions. Our initial evaluations of the diastereo-isomeric mixtures (16ad) revealed that the octahydroisochromene moiety functions as a core hydrophobic scaffold for the S2 pocket of the protease and the substituent at the 1-position may form additional interactions with the protease. The inhibitory activities of the diastereoisomerically-pure inhibitors (3ad) strongly suggest that a specific stereo-isomer of the octahydroisochromene scaffold, (1S, 3S) 3b, directs the P1 site imidazole, the warhead aldehyde, and substituent at the 1-position of the fused ring to their appropriate pockets in the protease.  相似文献   

8.
In this study, we present the synthesis and structure–activity relationships (SAR) of novel N-substituted nipecotic acid derivatives closely related to (S)-SNAP-5114 (2) in the pursuit of finding new and potent mGAT4 selective inhibitors. By the use of iminium ion chemistry, a series of new N-substituted nipecotic acid derivatives containing a variety of heterocycles, and an alkyne spacer were synthesized. Biological evaluation of the prepared compounds showed, how the inhibitory potency and subtype selectivity for the murine GABA transporters (mGATs) were influenced by the performed modifications.  相似文献   

9.
Myosin II is not essential for cytokinesis in cells of Dictyostelium discoideum that are anchored on a substrate (Neujahr, R., C. Heizer, and G. Gerisch. 1997. J. Cell Sci. 110:123–137), in contrast to its importance for cell division in suspension (DeLozanne, A., and J.A. Spudich. 1987. Science. 236:1086–1091; Knecht, D.A., and W.F. Loomis. 1987. Science. 236: 1081–1085.). These differences have prompted us to investigate the three-dimensional distribution of myosin II in cells dividing under one of three conditions: (a) in shaken suspension, (b) in a fluid layer on a solid substrate surface, and (c) under mechanical stress applied by compressing the cells. Under the first and second conditions outlined above, myosin II does not form patterns that suggest a contractile ring is established in the furrow. Most of the myosin II is concentrated in the regions that flank the furrow on both sides towards the poles of the dividing cell. It is only when cells are compressed that myosin II extensively accumulates in the cleavage furrow, as has been previously described (Fukui, Y., T.J. Lynch, H. Brzeska, and E.D. Korn. 1989. Nature. 341:328–331), i.e., this massive accumulation is a response to the mechanical stress. Evidence is provided that the stress-associated translocation of myosin II to the cell cortex is a result of the dephosphorylation of its heavy chains. F-actin is localized in the dividing cells in a distinctly different pattern from that of myosin II. The F-actin is shown to accumulate primarily in protrusions at the two poles that ultimately form the leading edges of the daughter cells. This distribution changes dynamically as visualized in living cells with a green fluorescent protein–actin fusion.  相似文献   

10.
This work describes a set of discovery research studies of an influenza cap-dependent endonuclease (CEN) inhibitor with a carbamoyl pyridone bicycle (CAB) scaffold. Using influenza CEN inhibitory activity, antiviral activity and pharmacokinetic (PK) parameters as indices, structure activity relationships (SAR) studies were performed at the N-1 and N-3 positions on the CAB scaffold, which is a unique template to bind two metals. The hydrophobic substituent at the N-1 position is extremely important for CEN inhibitory activity and antiviral activity, and dihydrodibenzothiepine is the most promising pharmacophore. The compound (S)-13i showed potent virus titer reduction over oseltamivir phosphate in an in vivo mouse model. The CAB compound described herein served as the lead compound of baloxavir marboxil with a tricyclic scaffold, which was approved in Japan and the USA in 2018.  相似文献   

11.
A HTS screen for CCR1 antagonists afforded a novel sub-micromolar hit 5 containing a pyrazole core. In this report the design, optimization, and SAR of novel CCR1 antagonists based on a pyrazole core motif is presented. Optimization led to the advanced candidate compounds (S)-16q and (S)-16r with 250-fold improved CCR1 potency, excellent off-target selectivity and attractive drug-like properties.  相似文献   

12.
Despite of proven efficacy and well tolerability, albomycin is not used clinically due to scarcity of material. Several attempts have been made to increase the production of albomycin by chemical or biochemical methods. In the current study, we have synthesized the active moiety of albomycin δ1 and investigated its binding mode to its molecular target seryl-trna synthetase (SerRS). In addition, isoleucyl and aspartyl congeners were prepared to investigate whether the albomycin scaffold can be extrapolated to target other aminoacyl-tRNA synthetases (aaRSs) from both class I and class II aaRSs, respectively. The synthesized analogues were evaluated for their ability to inhibit the corresponding aaRSs by an in vitro aminoacylation experiment using purified enzymes. It was observed that the diastereomer having the 5′S, 6′R-configuration (nucleoside numbering) as observed in the crystal structure, exhibits excellent inhibitory activity in contrast to poor activity of its companion 5′R,6′S-diasteromer obtained as byproduct during synthesis. Moreover, the albomycin core scaffold seems well tolerated for class II aaRSs inhibition compared with class I aaRSs. To understand this bias, we studied X-ray crystal structures of SerRS in complex with the albomycin δ1 core structure 14a, and AspRS in complex with compound 16a. Structural analysis clearly showed that diastereomer selectivity is attributed to the steric restraints of the active site of SerRS and AspRS.  相似文献   

13.
A series of aromatic and heterocyclic sulfonamides incorporating R- and S-camphorsulfonyl moieties were synthesized and investigated for the inhibition of several mammalian isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The new sulfonamides selectively inhibited the mitochondrial isozymes hCA VA and VB (h = human isoform) over the cytosolic, off-target ones hCA I and II, with inhibition constants in the low nanomolar range. The chirality and position of the groups substituting the sulfonamide scaffold greatly influenced CA inhibitory properties. These compounds are excellent leads for designing isoform-selective enzyme inhibitors targeting mitochondrial CAs involved in lipogenesis and obesity.  相似文献   

14.
Pyridine-based Factor XIa (FXIa) inhibitor (S)-2 was optimized by modifying the P2 prime, P1, and scaffold regions. This work resulted in the discovery of the methyl N-phenyl carbamate P2 prime group which maintained FXIa activity, reduced the number of H-bond donors, and improved the physicochemical properties compared to the amino indazole P2 prime moiety. Compound (S)-17 was identified as a potent and selective FXIa inhibitor that was orally bioavailable. Replacement of the basic cyclohexyl methyl amine P1 in (S)-17 with the neutral p-chlorophenyltetrazole P1 resulted in the discovery of (S)-24 which showed a significant improvement in oral bioavailability compared to the previously reported imidazole (S)-23. Additional improvements in FXIa binding affinity, while maintaining oral bioavailability, was achieved by replacing the pyridine scaffold with either a regioisomeric pyridine or pyrimidine ring system.  相似文献   

15.
A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII’s preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.  相似文献   

16.
Primary cilia are specialized, acetylated microtubule-based signaling processes. Cilium assembly is activated by cellular quiescence and requires reconfiguration of microtubules, the actin cytoskeleton, and vesicular trafficking machinery. How these components are coordinated to activate ciliogenesis remains unknown. Here we identify the microtubule acetyltransferase Mec-17 and myosin II motors as the key effectors in primary cilium biogenesis. We found that myosin IIB (Myh10) is required for cilium formation; however, myosin IIA (Myh9) suppresses it. Myh10 binds and antagonizes Myh9 to increase actin dynamics, which facilitates the assembly of the pericentrosomal preciliary complex (PPC) that supplies materials for cilium growth. Importantly, Myh10 expression is upregulated by serum-starvation and this induction requires Mec-17, which is itself accumulated upon cellular quiescence. Pharmacological stimulation of microtubule acetylation also induces Myh10 expression and cilium formation. Thus cellular quiescence induces Mec17 to couple the production of acetylated microtubules and Myh10, whose accumulation overcomes the inhibitory role of Myh9 and initiates ciliogenesis.  相似文献   

17.
New pyrido[3,4-g]quinazoline derivatives were prepared and evaluated for their inhibitory potency toward 5 protein kinases (CLK1, DYRK1A, GSK3, CDK5, CK1). A related pyrido[4,3-h]quinazoline scaffold with an angular structure was also synthesized and its potency against the same protein kinase panel was compared to the analogous pyrido[3,4-g]quinazoline. Best results were obtained for 10-nitropyrido[3,4-g]quinazoline 4 toward CLK1 with nanomolar activities.  相似文献   

18.
With the aim to discover novel HDAC inhibitors with high potency and good safety profiles, we have designed a small library based on a N-hydroxy-(4-oxime)-cinnamide scaffold. We describe the synthesis of these novel compounds and some preliminary in vitro cytotoxic activity on three tumor cell lines, NB4, H460 and HCT116, as well as their inhibitory activity against class I, II and IV HDAC. Several 4-oxime derivatives demonstrated a promising inhibitory activity on HDAC6 and HDAC8 coupled to a good selectivity profile.  相似文献   

19.
The effective treatment for dengue virus infection continues to be a challenge. We herein reported our continued SAR exploration on the spiropyrazolopyridone scaffold. Introducing different substituents at the 3́- or 5́-site of the pyrazolopyridone core or moving the benzyl chain to the adjacent nitrogen led to a significant loss of potency on DENV-2. While a narrow range of substitutions were tolerated at the para-position of the phenyl ring, di-substitution on the phenyl ring is beneficial for DENV-2 potency and has variable influences on DENV-3 potency depending on the exact compound. Among these molecules, compounds 22 (JMX0376) with 4-chloro-3-fluorobenzyl and 24 (JMX0395) with 2,4-bis(trifluoromethyl)benzyl showed the most potent and broadest inhibitory activities against DENV-1 to −3 with nanomolar to low micromolar EC50 values.  相似文献   

20.
A series of analogs of the non-peptidic urotensin II receptor agonist N-[1-(4-chlorophenyl)-3-(dimethylamino)propyl]-4-phenylbenzamide (FL104) has been synthesized and evaluated pharmacologically. The enantiomers of the two most potent racemic analogues were obtained from the corresponding diastereomeric mandelic amides. In agreement with previously observed SAR, most of the agonist potency resided in the (S) enantiomers. The most potent UII receptor agonist in the new series was (S)-N-[3-dimethylamino-1-(2-naphthyl)propyl]-4-(4-chlorophenyl)benzamide (EC50 = 23 nM at the urotensin II receptor).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号