首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Population divergence of phytophagous insects is often coupled to host‐plant shifts and is frequently attributed to the divergent selective environments associated with alternative host‐plants. In some cases, however, divergence is associated with the use of alternative host‐plant organs of a single host species. The basis of within‐host radiations such as these remains poorly understood. In the present stusy, we analysed the radiation of Asteromyia gall midges occurring both within one host plant species and within a single organ on that host. In this system, four morphologically distinct Asteromyia gall forms (morphs) coexist on the leaves of goldenrod Solidago altissima. Our analyses of amplified fragment length polymorphism and DNA sequence data confirm the genetic differentiation among midges from three gall morphs and reveal evidence of a genetically distinct fourth gall morph. The absence of clear gall morph related clades in the mitochondrial DNA derived phylogenies is indicative of incomplete lineage sorting or recent gene flow, suggesting that population divergence among gall forms is recent. We assess the likely history of this radiation and use the results of phylogenetic analyses along with ecological data on phenology and parasitism rates to evaluate potential hypotheses for the mode of differentiation. These preliminary analyses suggest that diversification of the Asteromyia gall morphs is likely shaped by interactions between the midge, a symbiotic fungus, and parasitoid enemies. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 840–858.  相似文献   

2.
Natural selection can play an important role in the genetic divergence of populations and their subsequent speciation. Such adaptive diversification, or ecological speciation, might underlie the enormous diversity of plant-feeding insects that frequently experience strong selection pressures associated with host plant use as well as from natural enemies. This view is supported by increasing documentation of host-associated (genetic) differentiation in populations of plant-feeding insects using alternate hosts. Here, we examine evolutionary diversification in a single nominal taxon, the gall midge Asteromyia carbonifera (O.S.), with respect to host plant use and gall phenotype. Because galls can be viewed as extended defensive phenotypes of the midges, gall morphology is likely to be a reflection of selective pressures by enemies. Using phylogenetic and comparative analyses of mtDNA and nuclear sequence data, we find evidence that A. carbonifera populations are rapidly diversifying along host plant and gall morphological lines. At a broad scale, geography explains surprisingly little genetic variation, and there is little evidence of strict co-cladogenesis with their Solidago hosts. Gall morphology is relatively labile, distinct gall morphs have evolved repeatedly and colonized multiple hosts, and multiple genetically and morphologically distinct morphs frequently coexist on a single host plant species. These results suggest that Asteromyia carbonifera is in the midst of an adaptive radiation driven by multitrophic selective pressures. Similar complex community pressures are likely to play a role in the diversification of other herbivorous insect groups.  相似文献   

3.
Abstract 1. Field studies were conducted to evaluate the preference and performance of a gall‐inducing midge (Harmandia tremulae) within the crown of trembling aspen (Populus tremuloides). Females did not select oviposition sites preferentially within leaves, but did lay preferentially on young leaves. 2. Larvae were the only life stage involved in gall site selection within leaves and in gall initiation and development. Gall size, which was positively related to survival, was highest for galls on mid veins that were located close to the petiole. However, one‐third of galls were located on lateral veins and most galls were not adjacent to the petiole, indicating that many larvae choose sub‐optimal gall initiation sites. 3. Gall density was positively associated with leaf length, and leaf length, was positively associated with gall size. However, gall density per leaf was not related to larval survival in galls. This latter result may be a result of an observed inverse relationship between gall size and gall density for similar‐sized leaves. 4. The results partially support the plant vigour and optimal plant module size hypotheses, which predict that galler fitness in successfully induced galls should be highest on large, fast‐growing plant modules. The lack of a strong preference‐performance link supports the confusion hypothesis, which predicts that oviposition and gall site selection may often be suboptimal in systems where galler lifespan is short. This study suggests that small‐scale variations in plant quality within leaves, can render gall site selection by juveniles as important as that previously reported for adult females.  相似文献   

4.
Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence.  相似文献   

5.
Saddle gall midge Haplodiplosis marginata (Diptera: Cecidomyiidae) is a pest of cereals across Europe. The occasional nature of this pest has resulted in limited and sporadic research activity. There remain important gaps in knowledge due either to a genuine lack of research or to previous research being difficult to access. These knowledge gaps make the development of effective control options difficult. Here, we review the existing literature in an attempt to consolidate the information on H. marginata from research which spans several decades and encompasses many different countries. The current distribution and pest status of this insect are updated, along with the methods of cultural and chemical control available to growers. The biology and life history of the insect are described in detail and the ecological processes governing them are discussed. A forecasting model is presented which allows the emergence of this pest in the UK to be predicted from degree day data, and the potential application of this model in management decisions is discussed. Finally, the areas in most need of further research are identified, along with suggestions of how this information can be used to help develop effective and sustainable management solutions for this pest.  相似文献   

6.
Population genomics is a useful tool to support integrated pest management as it can elucidate population dynamics, demography, and histories of invasion. Here, we use a restriction site‐associated DNA sequencing approach combined with whole‐genome amplification (WGA) to assess genomic population structure of a newly described pest of canola, the diminutive canola flower midge, Contarinia brassicola. Clustering analyses recovered little geographic structure across the main canola production region but differentiated several geographically disparate populations at edges of the agricultural zone. Given a lack of alternative hypotheses for this pattern, we suggest these data support alternative hosts for this species and thus our canola‐centric view of this midge as a pest has limited our understanding of its biology. These results speak to the need for increased surveying efforts across multiple habitats and other potential hosts within Brassicaceae to improve both our ecological and evolutionary knowledge of this species and contribute to effective management strategies. We additionally found that use of WGA prior to library preparation was an effective method for increasing DNA quantity of these small insects prior to restriction site‐associated DNA sequencing and had no discernible impact on genotyping consistency for population genetic analysis; WGA is therefore likely to be tractable for other similar studies that seek to randomly sample markers across the genome in small organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号