首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Species currently classified within the cyanobacterial genus Microcoleus were determined to fall into two distinct clades in a 16S rDNA phylogeny, one containing taxa within the Oscillatoriaceae, the other containing taxa within the Phormidiaceae. The two lineages were confirmed in an analysis of the 16S–23S internal transcribed spacer (ITS) region sequences and secondary structures. The type species for Microcoleus is M. vaginatus Gomont, and this taxon belongs in the Oscillatoriaceae. Consequently, Microcoleus taxa in the Phormidiaceae must be placed in separate genera, and we propose the new genus Coleofasciculus to contain marine taxa currently placed in Microcoleus. The type species for Coleofasciculus is the well‐studied and widespread marine mat‐forming species Microcoleus chthonoplastes (Mert.) Zanardini ex Gomont. Other characters separating the two families include type of cell division and thylakoid structure.  相似文献   

2.
In this study, the first reported isolates of the genera Snowella and Woronichinia were characterized by 16S rRNA gene sequencing and morphological analysis. Phylogenetic studies and sequences for these genera were not available previously. By botanical criteria, the five isolated strains were identified as Snowella litoralis (Häyrén) Komárek et Hindák Snowella rosea (Snow) Elenkin and Woronichinia naegeliana (Unger) Elenkin. This study underlines the identification of freshly isolated cultures, since the Snowella strains lost the colony structure and were not identifiable after extended laboratory cultivation. In the 16S rRNA gene analysis, the Snowella strains formed a monophyletic cluster, which was most closely related to the Woronichinia strain. Thus, our results show that the morphology of the genera Snowella and Woronichinia was in congruence with their phylogeny, and their phylogeny seems to support the traditional botanical classification of these genera. Furthermore, the genera Snowella and Woronichinia occurred commonly and might occasionally be the most abundant cyanobacterial taxa in mainly oligotrophic and mesotrophic Finnish lakes. Woronichinia occurred frequently and also formed blooms in eutrophic Czech reservoirs.  相似文献   

3.
Almost 80 years ago, a radiation scheme based on structural resemblance was first outlined for the marine order Dinophysiales. This hypothetical radiation illustrated the relationship between the dinophysioid genera and included several independent, extant lineages. Subsequent studies have supplied additional information on morphology and ecology to these evolutionary lineages. We have for the first time combined morphological information with molecular phylogenies to test the dinophysioid radiation hypothesis in a modern context. Nuclear‐encoded LSU rDNA sequences including domains D1‐D6 from 27 species belonging to Dinophysis Ehrenb., Ornithocercus F. Stein, Phalacroma F. Stein, Amphisolenia F. Stein, Citharistes F. Stein, and Histioneis F. Stein were obtained from the Indian Ocean. Previously, LSU rDNA has only been determined from one of these. In Bayesian analyses, Amphisolenia formed a long basal clade to the other dinophysioids. These diverged into two separate lineages, the first comprised species with a classical Phalacroma outline, also including the type species P. porodictyum F. Stein. Thus, we propose to reinstate the genus Phalacroma. The relationship between the genera in the second lineage was not well resolved. However, the molecular phylogeny supported monophyly of Histioneis and Citharistes and showed the genus Dinophysis to be polyphyletic and in need of a taxonomic revision. Species of Ornithocercus grouped with Citharistes, but this relationship remained unresolved. The phylogenetic trees furthermore revealed convergent evolution of several morphological characters in the dinophysioids. According to the molecular data, the dinophysioids appeared to have evolved quite differently from the radiation schemes previously hypothesized. Four dinophysioid species had identical LSU rDNA sequences to other well‐established species.  相似文献   

4.
Five cyanobacterial strains exhibiting Nostoc-like morphology were sampled from the biodiversity hotspots of the northeast region of India and characterized using a polyphasic approach. Molecular and phylogenetic analysis using the 16S rRNA gene indicated that the strains belonged to the genera Amazonocrinis and Dendronalium. In the present investigation, the 16S rRNA gene phylogeny clearly demarcated two separate clades of Amazonocrinis. The strain MEG8-PS clustered along with Amazonocrinis nigriterrae CENA67, which is the type strain of the genus. The other three strains ASM11-PS, RAN-4C-PS, and NP-KLS-5A-PS clustered in a different clade that was phylogenetically distinct from the Amazonocrinis sensu stricto clade. Interestingly, while the 16S rRNA gene phylogeny exhibited two separate clusters, the 16S–23S ITS region analysis did not provide strong support for the phylogenetic observation. Subsequent analyses raised questions regarding the resolving power of the 16S–23S ITS region at the genera level and the associated complexities in cyanobacterial taxonomy. Through this study, we describe a novel genus Ahomia to accommodate the members clustering outside the Amazonocrinis sensu stricto clade. In addition, we describe five novel species, Ahomia kamrupensis, Ahomia purpurea, Ahomia soli, Amazonocrinis meghalayensis, and Dendronalium spirale, in accordance with the International Code of Nomenclature for algae, fungi, and plants (ICN). Apart from further enriching the genera Amazonocrinis and Dendronalium, the current study helps to resolve the taxonomic complexities revolving around the genus Amazonocrinis and aims to attract researchers to the continued exploration of the tropical and subtropical cyanobacteria for interesting taxa and lineages.  相似文献   

5.
A nuclear18S rDNA phylogeny for cryptomonad algae is presented, including 11 species yet to be investigated by molecular means. The phylogenetic positions of the cryptomonad genera Campylomonas and Plagioselmis are assessed for the first time. Campylomonas groups most closely with morphologically similar species with the same accessory pigment from the genus Cryptomonas. Plagioselmis groups with the genera Teleaulax and Geminigera forming a clade whose members are united by unusual thylakoid arrangement. Nuclear 18S rDNA phylogeny divides cryptomonads into seven major lineages, two of which consist of the monospecific genera Proteomonas and Falcomonas. Analysis of nuclear18S rDNA sequence supports suggestions that a Falcomonas‐like cryptomonad gave rise to all other blue‐green cryptomonads. New sequence from the plastid‐lacking cryptomonad genus Goniomonas is also included, and the order of divergence of the major cryptomonad lineages is discussed. The morphology, number, and pigmentation of the cryptomonad plastidial complex are congruent with nuclear 18S rDNA phylogenies. Host cell features, such as periplast type, furrow/gullet system, and cell shape, can be more variable and may be markedly different in species that are closely related by nuclear 18S rDNA phylogeny. Conversely, some species that are not closely related by molecular phylogeny may display a very similar, possibly primitive, periplast and furrow morphology.  相似文献   

6.
For the first time in Belgium and Luxembourg, the diversity and taxonomy of 95 cyanobacterial strains isolated from freshwater blooms were assessed by the comparison of phenotypes and partial 16S rRNA gene sequences. The results showed the high diversity of nanoplanktonic, picoplanktonic, and benthic–periphytic cyanobacteria accompanying the main bloom‐forming taxa. Indeed, besides 15 morphotypes of bloom‐forming taxa, seven non‐bloom‐forming planktonic morphotypes and 11 morphotypes from benthic–periphytic taxa were isolated in culture from the plankton samples of 35 water bodies. The bloom‐forming strains belonged to the genera Microcystis, Woronichinia, Planktothrix, Anabaena, and Aphanizomenon, whereas the other strains isolated from the same samples were assigned to the nanoplanktonic Aphanocapsa, Aphanothece, Snowella, and Pseudanabaena; to the picoplanktonic Cyanobium; and to the benthic–periphytic Geitlerinema, Komvophoron, Leptolyngbya, Lyngbya, Phormidium, Calothrix, Nostoc, and Trichormus. The results supported both the polyphyletism of genera such as Aphanocapsa, Aphanothece, Leptolyngbya, Geitlerinema, Anabaena, and Aphanizomenon as well as the validity of genera such as Microcystis, Planktothrix, and Pseudanabaena with gas vesicles and cells constricted at the cross wall. The results obtained showed the close relationship between Snowella and Woronichinia for which very few sequences exist. The first sequence of Komvophoron appeared poorly related to other available cyanobacterial sequences. Although in a few cases a good agreement existed between phenotypic and genotypic features, there was generally a discrepancy. Strains with identical morphotypes show small differences in the 16S rRNA sequences, which might be related to the different chemical properties of their habitats. The results showed the importance of the polyphasic approach in order to improve the taxonomy of cyanobacteria.  相似文献   

7.
We investigated nine strains of the Micrasterias crux‐melitensis (Ehrenb.) Hassall ex Ralfs and M. radians W. B. Turner species complex. A combination of molecular, morphological, and geometric morphometric data was used to reveal the patterns of their phenotypic and phylogenetic differentiation. The molecular data based on internal transcribed spacer (ITS) rDNA, glycine transfer RNA (trnGuuc) intron, and SSU rDNA sequences revealed three phylogenetic lineages. One of them comprised the six European and North American strains that were morphologically identified as M. crux‐melitensis. Phenotypic data illustrated high morphological variability of strains within this genetically homogenous lineage that spanned several traditional infraspecific taxa, including strains corresponding to M. crux‐melitensis var. janeira (Racib.) Grönblad and M. crux‐melitensis var. superflua W. B. Turner, whose morphometric characteristics profoundly differed. Three strains of M. radians formed two separate phylogenetic lineages corresponding to traditional varieties M. radians var. evoluta (W. B. Turner) Willi Krieg. and M. radians var. bogoriensis (C. J. Bernard) G. S. West. The morphological types corresponding to the former variety have, so far, only been reported from Africa. Therefore, we cannot preclude that geographic isolation may play a role in species differentiation of relatively large freshwater protists, such as Micrasterias.  相似文献   

8.
The hydrodictyacean green algal lineage has been the focus of much research due to the fossil record of at least some members, their ornamented cell walls, and their distinctive reproductive strategies. The phylogeny of the family was, until recently, exclusively morphology based. This investigation examines hydrodictyacean isolates from several culture collections, focusing on sequences from ribosomal data: 18S rDNA, 26S rDNA (partial), and internal transcribed spacer (ITS)‐2 data. Results from phylogenetic analyses of independent and combined data matrices support the Hydrodictyaceae as a monophyletic lineage that includes isolates of Chlorotetraedron, Hydrodictyon, Pediastrum, Sorastrum, and Tetraedron. Phylogenetic analyses of rDNA data indicate that the three‐dimensional coenobium of Hydrodictyon is evolutionarily distinct from the three‐dimensional coenobium of Sorastrum. The more robust aspects of the ITS‐2 data corroborate the 18S+26S rDNA topology and provide a structural autapomorphy for the Hydrodictyaceae and Neochloridaceae, that is, an abridgment of helix IV in the secondary structure. The rDNA data do not support monophyly of Pediastrum but rather suggest the existence of four additional hydrodictyacean genera: Monactinus, Parapediastrum, Pseudopediastrum, and Stauridium.  相似文献   

9.
Fifty‐three strains of the genus Aphanizomenon isolated from Chinese waters were employed to conduct morphological examination and sequencing of the 16S rRNA gene, rbcLX (RUBISCO), and cpcBA‐IGS gene regions. Based on morphological characteristics, the examined strains were divided into three morphotypes [Aph. flos‐aquae Bréb. ex Bornet et Flahault, Aph. gracile Lemmerm., and Aph. issatchenkoi (Usacer) Proshk.‐Lavr.]. Phylogenetic analysis based on 16S rRNA and rbcLX showed that Aphanizomenon strains could be divided into three main clades (Clade A of Aph. flos‐aquae, Clade B of Aph. gracile, and Clade C of Aph. issatchenkoi), but two additional clades formed by Aph. ovalisporum and Aph. aphanizomenoides were detected in the 16S rDNA‐based topology. All Aph. issatchenkoi strains contained an additional 175 nucleotides from the 779 to 954 nucleotide location in rbcLX region, compared with strains of Aph. flos‐aquae and Aph. gracile. The cpcBA‐IGS‐based phylogenetic tree revealed that Aph. issatchenkoi strains were not discriminated from Aph. flos‐aquae strains; however, a concatenated alignment of 16S rDNA, rbcLX, and cpcBA‐IGS led to the three distinct clades (Aph. flos‐aquae, Aph. gracile, and Aph. issatchenkoi, respectively). It is suggested that the taxonomic revision of Aphanizomenon and Anabaena genera is required to be performed by employing multilocus sequence analysis and polyphasic studies.  相似文献   

10.
As the taxonomic knowledge of cyanobacteria from terrestrial environments increases, it remains important to analyze biodiversity in areas that have been understudied to fully understand global and endemic diversity. This study was completed as part of a larger algal biodiversity study of the soil biocrusts of San Nicholas Island, California, USA. Among the taxa isolated were several new species in three genera (Atlanticothrix, Pycnacronema, and Konicacronema) which were described from, and previously restricted to, Brazil. New taxa are described herein using a polyphasic approach to cyanobacterial taxonomy that considers morphological, molecular, ecological, and biogeographical factors. Morphological data corroborated by molecular analysis including sequencing of the 16S rRNA gene, and the associated 16S–23S ITS rRNA region was used to delineate three new species of Atlanticothrix, two species of Pycnacronema, and one species of Konicacronema. The overlap of genera from San Nicolas Island and Brazil suggests that cyanobacterial genera may be widely distributed across global hemispheres, whereas the presence of distinct lineages may indicate that this is not true at the species level. Our data suggest that based upon global wind patterns, cyanobacteria in both Northern and Southern hemispheres of the Americas may have a more recent common ancestor in Northern Africa, but this common ancestry is distant enough that speciation has occurred since transatlantic dispersal.  相似文献   

11.
This study presents a phenol and lysozyme free protocol for genomic DNA isolation of cyanobacteria from culture, mats and soil. For an efficient and pure DNA isolation from cyanobacteria having tough cell wall, extra steps of glass beading and Sepharose 4B purification were added. The modified method gave a higher yield of DNA than the phenol: chloroform extraction method. Four parameters selected for purity testing of the isolated DNA were: (i) restriction digestion with Hind III, (ii) randomly amplified polymorphic DNA-PCR of axenic culture of cyanobacteria to assess phylogenetic relatedness, (iii) denaturing gradient gel electrophoretic (DGGE) analysis of cyanobacterial mat and soil to ascertain the applicability of the isolated DNA for community analysis, and (iv) sequencing of partial 16S rDNA of Hapalosiphon intricatus BHULCR1, Anabaena doliolum LCR1, Anabaena oryzae LCR2, Aulosira fertilissima LCR4, and Tolypothrix tenuis LCR7 and BLAST analysis to confirm their cyanobacterial identity. Data generated from above analyses lead us to conclude that the modified method in question is rapid, cost effective, health and time conscious and promising for genetic fingerprinting and community analysis of cyanobacteria from diverse habitats.  相似文献   

12.
The phylogeny of morphologically simple algae is problematic due to insufficient morphological characters to aid in distinguishing species and relationships. The problem is further compounded because multiple evolutionary lineages of morphologically similar species occur in most well‐sampled biogeographic locations; therefore, location cannot be used as a proxy for species. The phylogeny of the upright members of the Erythropeltidales is partially clarified by combining molecular data, unialgal culture observations, and worldwide sampling. Our results show that there are several well‐supported lineages within the Erythropeltidales with only two morphologically recognizable taxa at present. The first is the genus Porphyrostromium, with a well‐developed basal crust, which includes two Erythrotrichia species (Porphyrostromium ligulatum comb. nov. and Porphyrostromium pulvinatum comb. nov.). The second is the branched species Erythrotrichia welwitschii (Rupr.) Batters. There are also six strongly supported Erythrotrichia carnea–like lineages. While not completely satisfactory, we propose that one lineage (lineage 2) with samples close to the type locality be designated as E. carnea with a specific isolate as an epitype. The lack of morphology to differentiate the other lineages leads to a taxonomy based solely on gene sequencing and molecular phylogeny, with rbcL sequences differentiating the lineages proposed. We hold off on proposing more species and genera until more data and samples can be gathered.  相似文献   

13.
Anabaenopsis spp. are heterocytous cyanobacteria commonly found in tropical, subtropical, and temperate water bodies. So far, the knowledge about the phylogeny of this genus is poor. Therefore, we have isolated 15 Anabaenopsis spp. strains from Kenyan and Mexican alkaline and saline water bodies and from a Ugandan freshwater body and studied the morphology and phylogeny in a polyphasic approach. Morphologically, the investigated strains could be discriminated in two groups. One group was containing six Anabaenopsis abijatae and A. cf. abijatae strains with up to more than 500 vegetative cells in one filament, mostly single intercalary heterocyte formation, and the ability to branch out. The other group comprised nine strains of Anabaenopsis elenkinii with short filaments with up to 38 vegetative cells, intercalary heterocytes in pairs, and no ability to branch out. The morphological differences were reflected in the two distinct clusters, which were found in the phylogenetic trees of 16S rDNA and PC-IGS. While the high 16S rDNA similarity values >97.5% found between all investigated A. abijatae and A. elenkinii strains support the assignment of these two species to one single genus, the morphological differences and the low similarity values (<87.3) found in PC-IGS sequences between the two clusters indicate two separate genera. A close morphological and phylogenetic relationship was found for A. abijatae and Anabaenopsis (Cyanospira) rippkae.  相似文献   

14.
Studies of cyanobacterial nostocacean taxa are important to the global scientific community, mainly because a significant number of beneficial strains that belong to the order Nostocales fix atmospheric nitrogen, thus contributing to the fertility of agricultural soils worldwide, while others behave as nuisance microorganisms in aquatic ecosystems due to their involvement in toxic bloom events. However, in spite of their ecological importance and environmental concerns, their identification and taxonomy are still problematic and doubtful, often being based on current morphological and physiological studies, which generate confusing classification systems and usually vary under different conditions. Therefore, the present research aimed to investigate through a polyphasic approach differences in morphological, biochemical and genotypic features of three nostocacean cyanobacterial strains isolated from central-western Portuguese shallow freshwater bodies. Morphometric, genetic (16S rRNA, nifH and hetR fragments) and biochemical (fatty acid methyl ester; FAME profiles) data were used to characterize the strains. Morphological analysis and sequencing of 16S rRNA fragments showed that the strains belonged to Anabaena cylindrica (UTAD_A212), Aphanizomenon gracile (UADFA16) and Nostoc muscorum (UTAD_N213) species. These strains showed clear distinct morphological and genetic features, allowing easy allocation to their respective genera. The same happened by using partial sequences of hetR and nifH genes, in spite of the scarcity of deposited sequences. Biochemical characterization showed that the FAME profiles obtained were consistent with both morphological and molecular analyses. It was suggested that the ratio of monounsaturated to polyunsaturated FAMEs, together with the unsaturation index, could be used as genus-specific chemotaxonomic biomarkers.  相似文献   

15.
The phylogeny of spider flies is presented based on an analysis of DNA sequence data combined with morphological characters for both living and fossil species. We sampled 40 extant and extinct genera across all major lineages of Acroceridae, which were compared with outgroup taxa from various lower brachyceran families. In all, 81 morphological characters of 60 extant and 10 extinct ingroup species were combined with 7.1 kb of DNA sequences of two nuclear (CAD and 28S rDNA) and two mitochondrial genes (COI and 16S rDNA). Results strongly support the monophyly of Acroceridae, with major clades contained within classified here in five extant subfamilies (Acrocerinae, Cyrtinae stat. rev. , Ogcodinae stat. rev. , Panopinae and Philopotinae) and one extinct subfamily, Archocyrtinae. The evolution of important spider fly traits is discussed, including genitalia and wing venation. The status of the enigmatic Psilodera Gray and Pterodontia Gray as members of the Panopinae is confirmed based on both molecular and morphological data.  相似文献   

16.
17.
The taxonomy of the Cladophoraceae, a large family of filamentous green algae, has been problematic for a long time due to morphological simplicity, parallel evolution, phenotypic plasticity, and unknown distribution ranges. Partial large subunit (LSU) rDNA sequences were generated for 362 isolates, and the analyses of a concatenated dataset consisting of unique LSU and small subunit (SSU) rDNA sequences of 95 specimens greatly clarified the phylogeny of the Cladophoraceae. The phylogenetic reconstructions showed that the three currently accepted genera Chaetomorpha, Cladophora, and Rhizoclonium are polyphyletic. The backbone of the phylogeny is robust and the relationships of the main lineages were inferred with high support, only the phylogenetic position of both Chaetomorpha melagonium and Cladophora rupestris could not be inferred unambiguously. There have been at least three independent switches between branched and unbranched morphologies within the Cladophoraceae. Freshwater environments have been colonized twice independently, namely by the freshwater Cladophora species as well as by several lineages of the Rhizoclonium riparium clade. In an effort to establish monophyletic genera, the genera Acrocladus and Willeella are resurrected and two new genera are described: Pseudorhizoclonium and Lurbica.  相似文献   

18.
The genus Peridinium Ehrenb. comprises a group of highly diversified dinoflagellates. Their morphological taxonomy has been established over the last century. Here, we examined relationships within the genus Peridinium, including Peridinium bipes F. Stein sensu lato, based on a molecular phylogeny derived from nuclear rDNA sequences. Extensive rDNA analyses of nine selected Peridinium species showed that intraspecies genetic variation was considerably low, but interspecies genetic divergence was high (>1.5% dissimilarity in the nearly complete 18S sequence; >4.4% in the 28S rDNA D1/D2). The 18S and 28S rDNA Bayesian tree topologies showed that Peridinium species grouped according to their taxonomic positions and certain morphological characters (e.g., epithecal plate formula). Of these groups, the quinquecorne group (plate formula of 3′, 2a, 7″) diverged first, followed by the umbonatum group (4′, 2a, 7″) and polonicum group (4′, 1a, 7″). Peridinium species with a plate formula of 4′, 3a, 7″ diverged last. Thus, 18S and 28S rDNA D1/D2 sequences are informative about relationships among Peridinium species. Statistical analyses revealed that the 28S rDNA D1/D2 region had a significantly higher genetic divergence than the 18S rDNA region, suggesting that the former as DNA markers may be more suitable for sequence‐based delimitation of Peridinium. The rDNA sequences had sufficient discriminative power to separate P. bipes f. occultaum (Er. Lindem.) M. Lefèvre and P. bipes f. globosum Er. Lindem. into two distinct species, even though these taxa are morphologically only marginally discriminated by spines on antapical plates and the shape of red bodies during the generation of cysts. Our results suggest that 28S rDNA can be used for all Peridinium species to make species‐level taxonomic distinctions, allowing improved taxonomic classification of Peridinium.  相似文献   

19.
Phylogenetic relationships within the family Rivulidae (order Cyprinodontiformes) are investigated using 1972 aligned base pairs of mitochondrial DNA (mtDNA) for samples representing 66 species. Genes analyzed include those encoding the 12S ribosomal RNA; transfer RNAs for valine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine, and tyrosine; complete NADH dehydrogenase subunit II; and part of cytochrome oxidase I. Parsimony analysis of the aligned mtDNA sequences results in a single most parsimonious tree. The phylogeny reveals two independent origins of developmental diapause within the family Rivulidae. It is unlikely that diapause evolved de novo in each group, suggesting that the presence or absence of diapause is the result of developmental switches between alternative stabilized pathways. Phylogeny of the family Rivulidae shows high concordance with predictions derived from the geological history of South America and Central America. Basal lineages in the rivulid phylogeny are distributed primarily on geologically old areas, whereas more nested lineages occur in geologically younger areas. However, there is little concordance between the molecular phylogeny and currently available morphological hypotheses and existing taxonomies. Based on the mtDNA phylogeny, the genera Pterolebias, Rivulus, Pituna, and Plesiolebias are considered nonmonophyletic and warrant taxonomic reassessment.  相似文献   

20.
Taxonomy of Cyanobacteria, the oldest phototrophic prokaryotes, is problematic for many years due to their simple morphology, high variability and adaptability to diverse ecological niches. After introduction of the polyphasic approach, which is based on the combination of several criteria (molecular sequencing, morphological and ecological), the whole classification system of these organisms is subject to reorganization. The aim of this study was to evaluate whether the outer membrane efflux protein (OMEP) sequences can be used as a molecular marker for resolving the phylogeny and taxonomic status of closely related cyanobacteria. We have performed phylogenetic analyses based on the amino acid sequences of the OMEP and the DNA sequences of the 16S rRNA gene from 86 cyanobacterial species/strains with completely sequenced genomes. Phylogenetic trees based on the OMEP showed that most of the cyanobacterial species/strains belonging to different genera are clustered in separate clades supported by high bootstrap values. Comparing the OMEP trees with the 16S rDNA tree clearly showed that the OMEP is more suitable marker in resolving phylogenetic relationships within Cyanobacteria at generic and species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号