首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supernumerary chromosomes sporadically arise in many eukaryotic species as a result of genomic rearrangements. If present in a substantial part of species population, those are called B chromosomes, or Bs. This is the case for 70 mammalian species, most of which are rodents. In humans, the most common types of extra chromosomes, sSMCs (small supernumerary marker chromosomes), are diagnosed in approximately 1 of 2000 postnatal cases. Due to low frequency in population, human sSMCs are not considered B chromosomes. Genetic content of both B-chromosomes and sSMCs in most cases remains understudied. Here, we apply microdissection of single chromosomes with subsequent low-pass sequencing on Ion Torrent PGM and Illumina MiSeq to identify unique and repetitive DNA sequences present in a single human sSMC and several B chromosomes in mice Apodemus flavicollis and Apodemus peninsulae. The pipeline for sequencing data analysis was made available in Galaxy interface as an addition to previously published command-line version. Human sSMC was attributed to the proximal part of chromosome 15 long arm, and breakpoints leading to its formation were located into satellite DNA arrays. Genetic content of Apodemus B chromosomes was species-specific, and minor alterations were observed in both species. Common features of Bs in these Apodemus species were satellite DNA and ERV enrichment, as well as the presence of the vaccinia-related kinase gene Vrk1. Understanding of the non-essential genome elements content provides important insights into genome evolution in general.  相似文献   

2.
Fifty-five specimens of Steindachneridion melanodermatum were analyzed using molecular and conventional cytogenetic tools. Two polymorphisms were found: one involving the length of nucleolar organizer regions and another involving two submetacentric chromosomes previously identified as sex chromosomes. The polymorphism was confirmed by homogeneity between male and female karyotypes. Nucleotide sequencing and physical chromosome mapping were also used to identify and characterize one class of repetitive DNA, named SmAluI-Rex3. Based on the results and literature the present study offers an update of the occurrence of sex chromosome system in this species.  相似文献   

3.
Fluorescence in situ hybridization (FISH) was used to study the distribution of Spelt-1 repetitive DNA sequences on chromosomes of 37 accessions representing eight polyploidy wheat species of the Emmer evolutionary lineage: Triticum dicoccoides Körn, T. dicoccum (Schrank) Schuebel, T. durum Desf., T. polonicum L., T. carthlicum Nevski, T. aethiopicum Jakubz., T. aestivum L., and T. spelta L. Substantial polymorphism in the number, distribution, and the sizes of the Spelt-1 loci was revealed. On the chromosomes of the accessions examined, Spelt-1 tandem repeats were found in seven different positions (per haploid chromosome set). These were “potential hybridization sites”, including the subtelomeric regions of either short or long arms of chromosomes 2A and 6B, the short arm of chromosome 1B, and the long arms of chromosomes 2B and 3B. However, in individual genotypes, only from one to three Spelt-1 loci were revealed. Furthermore, no hybridization with Spelt-1 probe was detected on chromosomes from 12 accessions. Thus, the total number of Spelt-1 sites in karyotypes varied from zero to three, with the average number of 1.16. This was substantially lower than in the species of the Timopheevi section and diploid Aegilops speltoides Tausch, a putative donor of the B genome. The decrease of the content of Spelt-1 sequences in the genomes of the Emmer group wheats in comparison with the species of the Timopheevii group and diploid Ae. speltoides was assumed to result from the repetitive sequences reorganization during polyploidization and the repeat elimination during wheat evolution.  相似文献   

4.

Background

The karyotypes of Leptodactylus species usually consist of 22 bi-armed chromosomes, but morphological variations in some chromosomes and even differences in the 2n have been reported. To better understand the mechanisms responsible for these differences, eight species were analysed using classical and molecular cytogenetic techniques, including replication banding with BrdU incorporation.

Results

Distinct chromosome numbers were found: 2n = 22 in Leptodactylus chaquensis, L. labyrinthicus, L. pentadactylus, L. petersii, L. podicipinus, and L. rhodomystax; 2n = 20 in Leptodactylus sp. (aff. podicipinus); and 2n = 24 in L. marmoratus. Among the species with 2n = 22, only three had the same basic karyotype. Leptodactylus pentadactylus presented multiple translocations, L. petersii displayed chromosome morphological discrepancy, and L. podicipinus had four pairs of telocentric chromosomes. Replication banding was crucial for characterising this variability and for explaining the reduced 2n in Leptodactylus sp. (aff. podicipinus). Leptodactylus marmoratus had few chromosomes with a similar banding patterns to the 2n = 22 karyotypes. The majority of the species presented a single NOR-bearing pair, which was confirmed using Ag-impregnation and FISH with an rDNA probe. In general, the NOR-bearing chromosomes corresponded to chromosome 8, but NORs were found on chromosome 3 or 4 in some species. Leptodactylus marmoratus had NORs on chromosome pairs 6 and 8. The data from C-banding, fluorochrome staining, and FISH using the telomeric probe helped in characterising the repetitive sequences. Even though hybridisation did occur on the chromosome ends, telomere-like repetitive sequences outside of the telomere region were identified. Metaphase I cells from L. pentadactylus confirmed its complex karyotype constitution because 12 chromosomes appeared as ring-shaped chain in addition to five bivalents.

Conclusions

Species of Leptodactylus exhibited both major and minor karyotypic differences which were identified by classical and molecular cytogenetic techniques. Replication banding, which is a unique procedure that has been used to obtain longitudinal multiple band patterns in amphibian chromosomes, allowed us to outline the general mechanisms responsible for these karyotype differences. The findings also suggested that L. marmoratus, which was formerly included in the genus Adenomera, may have undergone great chromosomal repatterning.
  相似文献   

5.
The karyotypes of the toad Bufo marinus L. (2n=22) and the frogs Limnodynastes tasmaniensis Gthr. (2n=24), Rana temporaria L., R. esculenta L. (both 2n=26) and R. arvalis Nills. (2n=24) were analysed in colchicine treated leukocyte and spermatogonial metaphases and/or embryonic and larval mitoses. The DNA content of Feulgen stained erythrocyte nuclei was measured microspectrophotometrically. Heteromorphic sex chromosomes are absent in all species. L. tasmaniensis has the lowest DNA content among these species. The south American toad B. marinus shows a karyotype similar to the other known toad species and contains the same amount of DNA as the European species B. calamita with the lowest DNA amount among the European toads. In southern German populations of R. temporaria besides animals with the “standard”-karyotype (2n=26) individuals with 1 or 2, in rare cases with 3 or 4 supernumerary chromosomes have been found. The supernumeraries are heterochromatic and smaller than the smallest chromosome of the “standard”-karyotype. If only 1 or 2 supernumerary chromosomes are present, they seem to show normal mendelian inheritance as a rule. The observation of a few tadpoles with intraindividual different numbers of supernumeraries points to the occurrence of unequal distribution of these chromosomes in individuals containing a higher number of supernumerary chromosomes. The karyotype of R. esculenta is very similar to the “standard”-karyotype of R. temporaria, but the chromosomes of R. esculenta are somewhat longer than those of R. temporaria. R. esculenta contains about 54% more DNA than R. temporaria in the erythrocyte nuclei, so that it must be assumed that all chromosomes of R. esculenta contain more DNA than their homologues in R. temporaria. R. arvalis possesses about 28% more DNA than R. temporaria. It is supposed that these interspecific differences in DNA content of the Rana species — as observed earlier in Bufo species — are not a consequence of differential polyteny but are caused during evolutionary processes by local increase in DNA in the chromosomes of R. esculenta and R. arvalis.  相似文献   

6.

Background

The genus Burkholderia consists of species that occupy remarkably diverse ecological niches. Its best known members are important pathogens, B. mallei and B. pseudomallei, which cause glanders and melioidosis, respectively. Burkholderia genomes are unusual due to their multichromosomal organization, generally comprised of 2-3 chromosomes.

Results

We performed integrated genomic analysis of 127 Burkholderia strains. The pan-genome is open with the saturation to be reached between 86,000 and 88,000 genes. The reconstructed rearrangements indicate a strong avoidance of intra-replichore inversions that is likely caused by selection against the transfer of large groups of genes between the leading and the lagging strands. Translocated genes also tend to retain their position in the leading or the lagging strand, and this selection is stronger for large syntenies. Integrated reconstruction of chromosome rearrangements in the context of strains phylogeny reveals parallel rearrangements that may indicate inversion-based phase variation and integration of new genomic islands. In particular, we detected parallel inversions in the second chromosomes of B. pseudomallei with breakpoints formed by genes encoding membrane components of multidrug resistance complex, that may be linked to a phase variation mechanism. Two genomic islands, spreading horizontally between chromosomes, were detected in the B. cepacia group.

Conclusions

This study demonstrates the power of integrated analysis of pan-genomes, chromosome rearrangements, and selection regimes. Non-random inversion patterns indicate selective pressure, inversions are particularly frequent in a recent pathogen B. mallei, and, together with periods of positive selection at other branches, may indicate adaptation to new niches. One such adaptation could be a possible phase variation mechanism in B. pseudomallei.
  相似文献   

7.
8.
Dioecious species accounted for 6% of all plant species, including a number of crops and economically important species, such as poplar. However, sex determination and sex chromosome evolution have been studied only in few dioecious species. In poplar, the sex-determining locus was mapped to chromosome 19. Interestingly, this locus was mapped to either a peritelomeric or a centromeric region among different poplar species. We developed an oligonucleotide (oligo)-based chromosome painting probe based on the sequence of chromosome 19 from Populus trichocarpa. We performed chromosome painting in P. tomentosa and P. deltoides. Surprisingly, the distal end on the short arm of chromosome 19, which corresponds to the location of the sex-determining locus reported in several species, was not painted in both species. Thus, the DNA sequences associated with this region have not been anchored to the current chromosome 19 pseudomolecule, which was confirmed by painting of somatic metaphase chromosome 19 of P. trichocarpa. Interestingly, the unpainted distal ends of the two chromosome 19 did not pair at the pachytene stage in 22–24% of the meiotic cells in the two species, suggest that these regions from the sex chromosomes have structurally diverged from each other, resulting in the reduced pairing frequency. These results shed light on divergence of a pair of young sex chromosomes in poplar.  相似文献   

9.

Key message

We report the development and characterization of Brassica oleracea - nigra monosomic alien addition lines (MAALs) to dissect the Brassica B genome.

Abstract

Brassica nigra (2n = 16, BB) represents the diploid Brassica B genome which carries many useful genes and traits for breeding but received limited studies. To dissect the B genome from B. nigra, the triploid F1 hybrid (2n = 26, CCB) obtained previously from the cross B. oleracea var. alboglabra (2n = 18, CC) × B. nigra was used as the maternal parent and backcrossed successively to parental B. oleracea. The progenies in BC1 to BC3 generations were analyzed by the methods of FISH and SSR markers to screen the monosomic alien addition lines (MAALs) with each of eight different B-genome chromosomes added to C genome (2n = 19, CC + 1B1?8), and seven different MAALs were established, except for the one with chromosome B2 which existed in one triple addition. Most of these MAALs were distinguishable morphologically from each other, as they expressed the characters from B. nigra differently and at variable extents. The alien chromosome remained unpaired as a univalent in 86.24% pollen mother cells at diakinesis or metaphase I, and formed a trivalent with two C-genome chromosomes in 13.76% cells. Transmission frequency of all the added chromosomes was far higher through the ovules (averagely 14.40%) than the pollen (2.64%). The B1, B4 and B5 chromosomes were transmitted by female at much higher rates (22.38–30.00%) than the other four (B3, B6, B7, B8) (5.04–8.42%). The MAALs should be valuable for exploiting the genome structure and evolution of B. nigra.
  相似文献   

10.
The nematode C. elegans is a classic study object of developmental biology and genetics, which is particularly suitable for studying the molecular bases of meiosis. Developing meiocytes are located in the threadlike gonads of C. elegans in linear gradient order of the stages of meiosis, which facilitates studying the order of intracellular events during meiosis. C. elegans has polycentric chromosomes. This causes a special order of events during meiosis, and as a consequence, meiosis in C. elegance differs from canonical meiosis of most eukaryotes. In the meiotic prophase I, all chromosomes carry single protein “pairing centers.” They are responsible for joining homologous chromosomes in pairs. This initiates the formation of synaptonemal complexes (SCs). Programmed double-stranded DNA breaks appear after initiation of the SC assembly, and they give rise to meiotic recombination. The initiation of meiotic recombination after the chromosome pairing distinguishes the C. elegans meiotic pattern from those in the absolute majority of eukaryotes studied. C. elegans has strict crossing over interference, which allows for the formation of one chiasma per bivalent. In the late prophase I, the polycentric centromeres are remodeled, one of the chromosome ends acquires a cuplike kinetochore, and during two meiotic divisions, chromosomes behave as monocentric. The study of meiosis in C. elegans allows for separate investigation of synapsis and recombination of homologous chromosomes and provides material for studying the evolution of meiosis.  相似文献   

11.
12.
13.

Key message

Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement.

Abstract

Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
  相似文献   

14.
Centromere is the defining unit of a chromosome where kinetochore complex assembles and facilitates chromosome segregation. Centromeres contain unique repetitive sequences and are enriched with transposons and retrotransposons. Although how centromere is determined is still not clearly understood, binding of a key protein, namely, the Centromeric Histone H3 (CENH3) to centromeric repetitive DNA sequences has been found to be critical for the specification of centromere. Hence, centromeres are said to be epigenetically specified by CENH3. Despite considerable variation in size and sequence, CENH3 protein shows significant conservation of structure and function. CENH3 disruption or overexpression shows severe defects in spindle fiber attachment and ultimately leads to embryo lethality. Basic studies on complementation of CENH3 in Arabidopsis thaliana have led to the development of a novel method of haploid production through selective elimination of one set of parental chromosomes in the zygote. These findings have also shed new light on selective loss of chromosomes in interspecific crosses of Hordeum vulgare × H. bulbosum. Here, we briefly review unique features of CENH3 and discuss the new plant breeding opportunities that have emerged from the study of CENH3.  相似文献   

15.

Main conclusion

Small RNAs and microRNAs were found to vary extensively in synthetic Brassica napus and subsequent generations, accompanied by the activation of transposable elements in response to hybridization and polyploidization.

Abstract

Resynthesizing B. napus by hybridization and chromosome doubling provides an approach to create novel polyploids and increases the usable genetic variability in oilseed rape. Although many studies have shown that small RNAs (sRNAs) act as important factor during hybridization and polyploidization in plants, much less is known on how sRNAs change in synthetic B. napus, particularly in subsequent generations after formation. We performed high-throughput sequencing of sRNAs in S1–S4 generations of synthetic B. napus and in the homozygous B. oleracea and B. rapa parent lines. We found that the number of small RNAs (sRNAs) and microRNAs (miRNAs) doubled in synthetic B. napus relative to the parents. The proportions of common sRNAs detected varied from the S1 to S4 generations, suggesting sRNAs are unstable in synthetic B. napus. The majority of miRNAs (67.2 %) were non-additively expressed in the synthesized Brassica allotetraploid, and 33.3 % of miRNAs were novel in the resynthesized B. napus. The percentage of miRNAs derived from transposable elements (TEs) also increased, indicating transposon activation and increased transposon-associated miRNA production in response to hybridization and polyploidization. The number of target genes for each miRNA in the synthesized Brassica allotetraploid was doubled relative to the parents, enhancing the complexity of gene expression regulation. The potential roles of miRNAs and their targets are discussed. Our data demonstrate generational changes in sRNAs and miRNAs in synthesized B. napus.
  相似文献   

16.
Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8–20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1—a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.  相似文献   

17.
While microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, little is known about the role of miRNAs in the regulation of KRAS in cancer. Here we review a selection of studies published in 2014 that have contributed to our understanding of the molecular mechanisms of KRAS regulation by miRNAs and the clinical relevance of sequence variants that may interfere with functional miRNA-mediated KRAS regulation.  相似文献   

18.
Fluorescent in situ hybridization (FISH) was used to study the distribution of the Spelt1 and Spelt52 repetitive DNA sequences on chromosomes of ten accessions representing three polyploid wheat species of the Timopheevi group: Triticum araraticum (7), T. timopheevii (2), and T. kiharae (1). Sequences of both families were found mostly in the subtelomeric chromosome regions of the G genome. The total number of Spelt1 sites varied from 8 to 14 in the karyotypes of the species under study; their number, location, and size differed among the seven T. araraticum accessions and were the same in the two T. timopheevii accessions and T. kiharae, an amphidiploid T. timopheevii-Aegilops tauschii hybrid. The Spelt52 tandem repeat was detected in the subtelomeric regions of chromosomes 1-4; its sites did not coincide with the Spelt1 sites. The chromosome distribution and signal intensity of the Spelt52 repeats varied in T. araraticum and were the same in T. timopheevii and T. kiharae. The chromosome distributions of the Spelt1 and Spelt52 repeats were compared for the polyploid wheats of the Timopheevi group and diploid Ae. speltoides, a putative donor of the G genome. The comparison revealed a decrease in hybridization level: both the number of sites per genome and the size of sites were lower. The decrease was assumed to result from repeat elimination during polyploidization and subsequent evolution of wheat and from the founder effect, since the origin of Timopheevi wheats might involve the genotype of Ae. speltoides, which is highly polymorphic for the distribution of Spelt1 and Spelt52 sequences and is similar in the chromosome location of the repeats to modern wheat.  相似文献   

19.
Triticum timopheevii (2n = 4x = 28, GGAtAt) is a tetraploid wheat formerly cultivated in western Georgia. The natural allopolyploid Triticum zhukovskyi is a hexaploid taxon originated from hybridization of T. timopheevii with cultivated einkorn T. monococcum (2n = 2x = 14, AmAm). Karyotypically T. timopheevii and T. zhukovskyi differ from other tetraploid and hexaploid wheats and were assigned to the section Timopheevii of the genus Triticum L. Triticum timopheevii and T. zhukovskyi are resistant to many fungal diseases and therefore could potentially be utilized for wheat improvement. We were aiming to precisely identify all T. timopheevii chromosomes and to trace the evolution of T. zhukovskyi. For this, we developed a set of molecular cytogenetic landmarks based on eleven DNA probes. Each chromosome can now be characterized by two to eight probes. The pTa-535 sequence allows the identification of all At-genome chromosomes, whereas G-genome and some At-genome chromosomes can be identified using (GAA/CTT) n and pSc119.2 probes. The probes pAesp_SAT86, pAs1, Spelt-1, Spelt-52 and 5S and 45S rDNA can be applied as additional markers to discriminate particular chromosomes or chromosomal regions. The distribution of (GAA/CTT) n , pTa-535 and pSc119.2 DNA probes on T. timopheevii chromosomes is distinct from other tetraploid wheats and can therefore be used to track individual chromosomes in introgression programs. Our study confirms the origin of T. zhukovskyi from hybridization of T. timopheevii with T. monococcum; however, we show that the emergence was accompanied by changes involving mostly At-genome chromosomes. This may be due to the presence of two closely related A-genomes in the T. zhukovskyi karyotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号