首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mate choice and imprinting in birds studied by cross-fostering in the wild   总被引:13,自引:0,他引:13  
Sexual-selection theories generally assume that mating preferences are heritable traits. However, there is substantial evidence that the rearing environment may be important for the development of mating preferences, indicating that they may be learnt, or modified by experience. The relative importance of such sexual imprinting across species remains largely unexplored. Here, we report results of a large-scale cross-fostering experiment in the wild in which nestling birds were raised by parents of a different species. We show that resulting sexual imprinting may have a negative effect on pairing success in one species (the great tit, Parus major), but not in two other species (the blue tit, P. caeruleus and the pied flycatcher, Ficedula hypoleuca). A remarkable variation thus seems to exist, even between species that are congeneric and have similar breeding ecologies. The cross-fostering resulted in heterospecific pairings between the two tit species (female blue tit breeding with male great tit), which has never, to our knowledge, been previously documented. However, the chicks fledging from these nests were all blue tit.  相似文献   

2.
Sexual imprinting on discrete variation that serves the identification of species, morphs or sexes is well documented. By contrast, sexual imprinting on continuous variation leading to individual differences in mating preferences within a single species, morph and sex has been studied only once (in humans). We measured female preferences in a captive population of wild-type zebra finches. Individual cross-fostering ensured that all subjects grew up with unrelated foster parents and nest mates. Females from two cohorts (N = 113) were given a simultaneous choice between (two or four) unfamiliar males, one of which was a genetic son of their foster parents (SFP). We found no significant overall preference for the SFP (combined effect size d = 0.14 +/- 0.15). Additionally, we tested if foster parent traits could potentially explain between-female variation in preferences. However, neither the effectiveness of cooperation between the parents nor male contribution to parental care affected female preferences for the son of the foster father. We conclude that at least in zebra finches sexual imprinting is not a major source of between-individual variation in mating preferences.  相似文献   

3.
Female mate choice has often been proposed to play an important role in cases of rapid speciation, in particular in the explosively evolved haplochromine cichlid species flocks of the Great Lakes of East Africa. Little, if anything, is known in cichlid radiations about the heritability of female mating preferences. Entirely sympatric distribution, large ecological overlap and conspicuous differences in male nuptial coloration, and female preferences for these, make the sister species Pundamilia pundamilia and P. nyererei from Lake Victoria an ideally suited species pair to test assumptions on the genetics of mating preferences made in models of sympatric speciation. Female mate choice is necessary and sufficient to maintain reproductive isolation between these species, and it is perhaps not unlikely therefore, that female mate choice has been important during speciation. A prerequisite for this, which had remained untested in African cichlid fish, is that variation in female mating preferences is heritable. We investigated mating preferences of females of these sister species and their hybrids to test this assumption of most sympatric speciation models, and to further test the assumption of some models of sympatric speciation by sexual selection that female preference is a single-gene trait. We find that the differences in female mating preferences between the sister species are heritable, possibly with quite high heritabilities, and that few but probably more than one genetic loci contribute to this behavioural speciation trait with no apparent dominance. We discuss these results in the light of speciation models and the debate about the explosive radiation of cichlid fishes in Lake Victoria.  相似文献   

4.
Mate‐choice imprinting, the determination of mating preferences at an early age based on an individual's observation of adults, plays a role in mate choice in a wide variety of animals. Theoretical work has thus far been focused either on the effects of mate‐choice imprinting on the evolution of the male trait used as a mating cue, or on the evolution of imprinting against a nonimprinting background. We ask the question: if multiple types of imprinting are possible in a species, which is likely to evolve? We develop a haploid population genetic model to compare the evolution of three forms of imprinting: paternal, maternal, and oblique (nonparental adult) imprinting. We find that paternal imprinting is the most likely to evolve, whereas maternal and oblique are nearly equivalent. We identify two factors that determine a strategy's success: its “imprinting set,” the set of individuals imprinted upon, and phenogenotypic disequilibrium, the association between imprinted preferences and mating cues. We assess the predictive power of these factors, and find that the imprinting set is the primary determinant of a strategy's success. We suggest that the imprinting set concept may be generalized to predict the success of additional imprinting strategies, such as mate‐choice copying.  相似文献   

5.
Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.  相似文献   

6.
The aim of this review is to consider variation in mating p among females. We define mating p as the sensory and behavioural properties that influence the propensity of individuals to mate with certain phenotypes. Two properties of mating p can be distinguished: (i) ‘preference functions’–the order with which an individual ranks prospective mates and (2)‘choosiness’ -the effort an individual is prepared to invest in mate assessment. Patterns of mate choices can be altered by changing the costs of choosiness without altering the preference function. We discuss why it is important to study variation in female mating behaviour and identify five main areas of interest: Variation in mating p and costs of choosiness could (i) influence the rate and direction of evolution by sexual selection, (2) provide information about the evolutionary history of female p, (3) help explain inter-specific differences in the evolution of secondary sexual characteristics, (4) provide information about the level of benefits gained from mate choice, (5) provide information about the underlying mechanisms of mate choice. Variation in mate choice could be due to variability in preference functions, degree of choosiness, or both, and may arise due to genetic differences, developmental trajectories or proximate environmental factors. We review the evidence for genetic variation from genetic studies of heritability and also from data on the repeatability of mate-choice decisions (which can provide information about the upper limits to heritability). There can be problems in interpreting patterns of mate choice in terms of variation in mating p and we illustrate two main points. First, some factors can lead to mate choice patterns that mimic heritable variation in p and secondly other factors may obscure heritable p. These factors are divided into three overlapping classes, environmental, social and the effect of the female phenotype. The environmental factors discussed include predation risk and the costs of sampling; the social factors discussed include the effect of male–male interactions as well as female competition. We review the literature which presents data on how females sample males and discuss the number of cues females use. We conclude that sexual-selection studies have paid far less attention to variation among females than to variation among males, and that there is still much to learn about how females choose males and why different females make different choices. We suggest a number of possible lines for future research.  相似文献   

7.
Sexual selection acting on small initial differences in mating signals and mate preferences can enhance signal–preference codivergence and reproductive isolation during speciation. However, the origin of initial differences in sexual traits remains unclear. We asked whether biotic environments, a source of variation in sexual traits, may provide a general solution to this problem. Specifically, we asked whether genetic variation in biotic environments provided by host plants can result in signal–preference phenotypic covariance in a host‐specific, plant‐feeding insect. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess patterns of variation in male mating signals and female mate preferences induced by genetic variation in host plants. We employed a novel implementation of a quantitative genetics method, rearing field‐collected treehoppers on a sample of naturally occurring replicated host plant clone lines. We found remarkably high signal–preference covariance among host plant genotypes. Thus, genetic variation in biotic environments influences the sexual phenotypes of organisms living on those environments in a way that promotes assortative mating among environments. This consequence arises from conditions likely to be common in nature (phenotypic plasticity and variation in biotic environments). It therefore offers a general answer to how divergent sexual selection may begin.  相似文献   

8.
9.
Female mate choice is much more dynamic than we once thought. Mating decisions depend on both intrinsic and extrinsic factors, and these two may interact with one another. In this study, we investigate how responses to the social mating environment (extrinsic) change as individuals age (intrinsic). We first conducted a field survey to examine the extent of natural variation in mate availability in a population of threespine sticklebacks. We then manipulated the sex ratio in the laboratory to determine the impact of variation in mate availability on sexual signaling, competition, and mating decisions that are made throughout life. Field surveys revealed within season heterogeneity in mate availability across breeding sites, providing evidence for the variation necessary for the evolution of plastic preferences. In our laboratory study, males from both female‐biased and male‐biased treatments invested most in sexual signaling late in life, although they competed most early in life. Females became more responsive to courtship over time, and those experiencing female‐biased, but not male‐biased sex ratios, relaxed their mating decisions late in life. Our results suggest that social experience and age interact to affect sexual signaling and female mating decisions. Flexible behavior could mediate the potentially negative effects of environmental change on population viability, allowing reproductive success even when preferred mates are rare.  相似文献   

10.
Female crickets can exert post-copulatory mating preferences by prematurely removing a male's spermatophore after copulation, which terminates sperm transfer. Although most models of sexual selection assume that female mating preferences are heritable, there has been little work addressing genetic variation underlying post-copulatory mate choice. We used a paternal half-sib design, in which different males were randomly assigned as mates to several females to create half-sib families, to determine the heritability of spermatophore retention time in female house crickets, Acheta domesticus. There was significant additive genetic variance in the timing of spermatophore removal by females [h(2) = 0.50 +/- 0.19 (+/- SE)], suggesting that the timing of spermatophore removal is determined, in part, by the female's own genotype independent of the quality of her mate. The relatively high heritability of spermatophore retention time may be reflective of the absence of strong selection on this trait, consistent with previous work showing no difference in the fitness of females permitted to freely remove the spermatophore of their mates and those forced to accept complete ejaculates.  相似文献   

11.
Repeatability: Its role in evolutionary studies of mating behavior   总被引:6,自引:0,他引:6  
Summary Repeatability, a concept derived from quantitative genetics theory, is a statistic that describes the degree to which variation within individuals contributes to total variation in a population. Its usual application has been to set an upper limit on heritability but it may also be useful for studies of stereotypy of behavior. The repeatability of the production of male mating signals gives information both about whether males differ sufficiently for selection to act and whether the differences could be appreciably heritable. Measures of the repeatability of female mating preferences will provide data that can describe the preference functions used in mathematical models of the evolution of sexually selected traits, as well as putting an upper bound on the heritability of preferences. A survey of the few measures in the literature shows that the repeatability of male signal production varies substantially (range 0.21–0.85) and does not necessarily reflect heritability. The repeatabilities of female preferences have not been published previously: for the response to conspecific pheromones by female flour beetles (Tribolium castaneum), my best estimate is zero. Measuring the repeatability of other traits such as parental care and foraging behavior may also lead to insights about selection on and the evolution of these traits.  相似文献   

12.
Size‐assortative mating is a nonrandom association of body size between members of mating pairs and is expected to be common in species with mutual preferences for body size. In this study, we investigated whether there is direct evidence for size‐assortative mating in two species of pipefishes, Syngnathus floridae and S. typhle, that share the characteristics of male pregnancy, sex‐role reversal, and a polygynandrous mating system. We take advantage of microsatellite‐based “genetic‐capture” techniques to match wild‐caught females with female genotypes reconstructed from broods of pregnant males and use these data to explore patterns of size‐assortative mating in these species. We also develop a simulation model to explore how positive, negative, and antagonistic preferences of each sex for body size affect size‐assortative mating. Contrary to expectations, we were unable to find any evidence of size‐assortative mating in either species at different geographic locations or at different sampling times. Furthermore, two traits that potentially confer a fitness advantage in terms of reproductive success, female mating order and number of eggs transferred per female, do not affect pairing patterns in the wild. Results from model simulations demonstrate that strong mating preferences are unlikely to explain the observed patterns of mating in the studied populations. Our study shows that individual mating preferences, as ascertained by laboratory‐based mating trials, can be decoupled from realized patterns of mating in the wild, and therefore, field studies are also necessary to determine actual patterns of mate choice in nature. We conclude that this disconnect between preferences and assortative mating is likely due to ecological constraints and multiple mating that may limit mate choice in natural populations.  相似文献   

13.
One-allele isolating mechanisms should make the evolution of reproductive isolation between potentially hybridizing taxa easier than two-allele mechanisms, but the generality of one-allele mechanisms in nature has yet to be established. A potentially important one-allele mechanism is sexual imprinting, where the mate preferences of individuals are based on the phenotype of their parents. Here I test the possibility that sexual imprinting promotes reproductive isolation using sympatric species of threespine sticklebacks (Gasterosteus aculeatus). Sympatric species of sticklebacks consist of large benthic species and small limnetic species that are reproductively isolated and adapted to feeding in different environments. I fostered families of F1 hybrids between the species to males of both species. Preferences of these fostered females for males of either type revealed little or no effect of sexual imprinting on assortative mating. However, F1 females showed preferences for males that were similar to themselves in length, suggesting that size-assortative mating may be more important than sexual imprinting for promoting reproductive isolation between species pairs of threespine sticklebacks.  相似文献   

14.
Discriminating female mate preferences enhance the variance in reproductive success among males of a population and create a potential for sexual selection, which can account for trait evolution and diversification. Fish color patterns are among the prime targets of mate choice-driven sexual selection. Populations of the cichlid Tropheus from Lake Tanganyika display remarkable geographic color pattern variation, but the role of female choice in their rapid and rich phenotypic diversification is unclear. Males and females establish a pair bond prior to spawning monogamously, but as brood care is strictly maternal, female investment in reproduction is high and the operational sex ratio is male-biased. Therefore, variance in male reproductive success can accrue if individual males succeed repeatedly in securing a mate. To test this prediction in the red colored Tropheus moorii “Chimba”, four pairs of males were presented to a series of females and female mate preferences were inferred from pairwise interactions. There was a significant difference in mating success between the males of each pair (P < 0.001 over all trials), as—with one exception—females shared preferences for the same males. Male courtship activity was strongly correlated with female choice. Our experiment suggests that female choice contributes to the variance in male reproductive success in the tested population.  相似文献   

15.
H. Kokko 《Ecology letters》2001,4(4):322-326
“Good genes” models of mate choice are commonly tested by examining whether attractive males sire offspring with improved survival. If offspring do not survive better (or indeed survive less well), but instead inherit the attractiveness of their father, results are typically interpreted to support the Fisherian process, which allows the evolution of preferences for arbitrary traits. Here, I show that the above view is mistaken. Because of life‐history trade‐offs, an attractive male may perform less well in other components of fitness. A female obtains a “good genes” benefit whenever males show heritable variation in quality, even if high‐quality males invest so much in sexual advertisement that attractiveness has no positive correlation with any other life‐history trait than male mating success itself. Therefore, a negative correlation between attractiveness and viability does not falsify good genes, if mating with a high‐quality male results on average in superior offspring performance (mating success of sons included). The heritable “good genes” benefit can be sustained even if sexually antagonistic genes cause female offspring sired by high‐quality males to survive and reproduce less well. Neglecting the component of male mating success from measurements of fitness returns from sons and daughters will bias the advantage of mating with a high‐quality male downwards. This result may partly account for the rather weak “good genes” effects found in a recent meta‐analysis.  相似文献   

16.
Maladaptive mate choice maintained by heterozygote advantage   总被引:3,自引:0,他引:3  
Common buzzards (Buteo buteo) show a plumage polymorphism that appears to be maintained by heterozygote advantage and allows a maladaptive form of mate choice to persist. The light and dark morphs have a much lower fitness than the presumed heterozygous intermediate morph, but are replenished through Mendelian segregation in intermediate-intermediate pairs. Light and dark morphs could maximize their fitness by mating light with dark to produce all intermediate offspring, but instead choose partners of their own color, thereby producing broods of minimally fit homozygotes. Such maladaptive behavior argues forcefully against mate choice based on "good genes," and its persistence is best explained by heterozygote advantage maintaining the polymorphism coupled with nongenetic mate choice based on sexual imprinting. Modeling different patterns of mate choice shows that random mating and preference for own morph fit our data poorly, whereas preference for mother's morph yields a good fit.  相似文献   

17.
Models of sexual selection assume that female mating preferences are heritable and, thus, repeatable for individual females across multiple mating episodes. Previous studies of the repeatability of female preference have examined individuals in captivity and focused presumably on social mate choice. However, extra-pair mating is widespread and can also influence sexual selection. We examined the repeatability of extra-pair mating in a wild population of tree swallows (Tachycineta bicolor) by experimentally inducing females to lay two clutches in rapid succession within the same season. We found that the proportion of extra-pair young and the number of extra-pair sires were highly repeatable for individual females. However, the repeatability of specific extra-pair sires was low. We suggest that this unusual pattern of mating may be due to females maximizing the heterozygosity of their offspring.  相似文献   

18.
Research on mate choice has primarily focused on preferences for quality indicators, assuming that all individuals show consensus about who is the most attractive. However, in some species, mating preferences seem largely individual-specific, suggesting that they might target genetic or behavioral compatibility. Few studies have quantified the fitness consequences of allowing versus preventing such idiosyncratic mate choice. Here, we report on an experiment that controls for variation in overall partner quality and show that zebra finch (Taeniopygia guttata) pairs that resulted from free mate choice achieved a 37% higher reproductive success than pairs that were forced to mate. Cross-fostering of freshly laid eggs showed that embryo mortality (before hatching) primarily depended on the identity of the genetic parents, whereas offspring mortality during the rearing period depended on foster-parent identity. Therefore, preventing mate choice should lead to an increase in embryo mortality if mate choice targets genetic compatibility (for embryo viability), and to an increase in offspring mortality if mate choice targets behavioral compatibility (for better rearing). We found that pairs from both treatments showed equal rates of embryo mortality, but chosen pairs were better at raising offspring. These results thus support the behavioral, but not the genetic, compatibility hypothesis. Further exploratory analyses reveal several differences in behavior and fitness components between “free-choice” and “forced” pairs.  相似文献   

19.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

20.
Sexual reproduction relies on the recognition of conspecifics for breeding. Most experiments in birds have implicated a critical role for early social learning in directing subsequent courtship behaviours and mating decisions. This classical view of avian sexual imprinting is challenged, however, by studies of megapodes and obligate brood parasites, species in which reliable recognition is achieved despite the lack of early experience with conspecifics. By rearing males with either conspecific or heterospecific brood mates, we experimentally tested the effect of early social experience on the association preferences and courtship behaviours of two sympatrically breeding ducks. We predicted that redheads (Aythya americana), which are facultative interspecific brood parasites, would show a diminished effect of early social environment on subsequent courtship preferences when compared with their host and congener, the canvasback (Aythya valisineria). Contrary to expectations, cross-fostered males of both species courted heterospecific females and preferred them in spatial association tests, whereas control males courted and associated with conspecific females. These results imply that ontogenetic constraints on species recognition may be a general impediment to the initial evolution of interspecific brood parasitism in birds. Under more natural conditions, a variety of mechanisms may mitigate or counteract the effects of early imprinting for redheads reared in canvasback broods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号