首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the formation of homogentisate from 4-hydroxyphenylpyruvate and O2. In plants, HPPD has been identified as a molecular target for herbicides. We report the isolation and characterization of a cDNA encoding a HPPD from cultured Coptis japonica cells. Recombinant CjHPPD showed significantly higher half-maximum inhibitory concentration (IC50) values for the HPPD-inhibiting herbicide destosyl pyrazolate than other plant HPPDs.  相似文献   

2.
Vitamin E tocotrienol synthesis in monocots requires homogentisate geranylgeranyl transferase (HGGT), which catalyzes the condensation of homogentisate and the unsaturated C20 isoprenoid geranylgeranyl diphosphate (GGDP). By contrast, vitamin E tocopherol synthesis is mediated by homogentisate phytyltransferase (HPT), which condenses homogentisate and the saturated C20 isoprenoid phytyl diphosphate (PDP). An HGGT‐independent pathway for tocotrienol synthesis has also been shown to occur by de‐regulation of homogentisate synthesis. In this paper, the basis for this pathway and its impact on vitamin E production when combined with HGGT are explored. An Arabidopsis line was initially developed that accumulates tocotrienols and homogentisate by co‐expression of Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) and Escherichia coli bi‐functional chorismate mutase/prephenate dehydrogenase (TyrA). When crossed into the vte2–1 HPT null mutant, tocotrienol production was lost, indicating that HPT catalyzes tocotrienol synthesis in HPPD/TyrA‐expressing plants by atypical use of GGDP as a substrate. Consistent with this, recombinant Arabidopsis HPT preferentially catalyzed in vitro production of the tocotrienol precursor geranylgeranyl benzoquinol only when presented with high molar ratios of GGDP:PDP. In addition, tocotrienol levels were highest in early growth stages in HPPD/TyrA lines, but decreased strongly relative to tocopherols during later growth stages when PDP is known to accumulate. Collectively, these results indicate that HPPD/TyrA‐induced tocotrienol production requires HPT and occurs upon enrichment of GGDP relative to PDP in prenyl diphosphate pools. Finally, combined expression of HPPD/TyrA and HGGT in Arabidopsis leaves and seeds resulted in large additive increases in vitamin E production, indicating that homogentisate concentrations limit HGGT‐catalyzed tocotrienol synthesis.  相似文献   

3.
4‐Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the second reaction in the tyrosine catabolism and is linked to the production of cofactors plastoquinone and tocopherol in plants. This important biological role has put HPPD in the focus of current herbicide design efforts including the development of herbicide‐tolerant mutants. However, the molecular mechanisms of substrate binding and herbicide tolerance have yet to be elucidated. In this work, we performed molecular dynamics simulations and free energy calculations to characterize active site gating by the C‐terminal helix H11 in HPPD. We compared gating equilibria in Arabidopsis thaliana (At) and Zea mays (Zm) wild‐type proteins retrieving the experimentally observed preferred orientations from the simulations. We investigated the influence of substrate and product binding on the open–closed transition and discovered a ligand‐mediated conformational switch in H11 that mediates rapid substrate access followed by active site closing and efficient product release through H11 opening. We further studied H11 gating in At mutant HPPD, and found large differences with correlation to experimentally measured herbicide tolerance. The computational findings were then used to design a new At mutant HPPD protein that showed increased tolerance to six commercially available HPPD inhibitors in biochemical in vitro experiments. Our results underline the importance of protein flexibility and conformational transitions in substrate recognition and enzyme inhibition by herbicides.  相似文献   

4.
p-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism and is the molecular target site of β-triketone pharmacophores used to treat hypertyrosinemia in humans. In plants, HPPD is involved in the biosynthesis of prenyl quinones and tocopherols, and is the target site of β-triketone herbicides. The β-triketone-rich essential oil of manuka (Leptospermum scoparium), and its components leptospermone, grandiflorone and flavesone were tested for their activity in whole-plant bioassays and for their potency against HPPD. The achlorophyllous phenotype of developing plants exposed to manuka oil or its purified β-triketone components was similar to that of plants exposed to the synthetic HPPD inhibitor sulcotrione. The triketone-rich fraction and leptospermone were approximatively 10 times more active than that of the crude manuka oil, with I50 values of 1.45, 0.96 and 11.5 μg mL−1, respectively. The effect of these samples on carotenoid levels was similar. Unlike their synthetic counterpart, steady-state O2 consumption experiments revealed that the natural triketones were competitive reversible inhibitors of HPPD. Dose-response curves against the enzyme activity of HPPD provided apparent I50 values 15.0, 4.02, 3.14, 0.22 μg mL−1 for manuka oil, triketone-rich fraction, leptospermone and grandiflorone, respectively. Flavesone was not active. Structure-activity relationships indicate that the size and lipophilicity of the side-chain affected the potency of the compounds. Computational analysis of the catalytic domain of HPPD indicates that a lipophilic domain proximate from the Fe2+ favors the binding of ligands with lipophilic moieties.  相似文献   

5.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the formation of homogentisate from 4-hydroxyphenylpyruvate and O(2). In plants, HPPD has been identified as a molecular target for herbicides. We report the isolation and characterization of a cDNA encoding a HPPD from cultured Coptis japonica cells. Recombinant CjHPPD showed significantly higher half-maximum inhibitory concentration (IC(50)) values for the HPPD-inhibiting herbicide destosyl pyrazolate than other plant HPPDs.  相似文献   

6.
The enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of p-hydroxyphenylpyruvate to homogentisic acid (HGA), the aromatic precursor for the biosynthesis of vitamin E (α-tocopherol) and plastoquinone. In order to determine if increased HPPD activity could positively impact tocopherol yields, transgenic plants were generated that overexpressed the gene encoding Arabidopsis HPPD. Transgenic plants exhibiting high levels of HPPD expression were identified by increased tolerance to a competitive inhibitor of HPPD, the herbicide sulcotrione. HPPD gene expression in these transgenic lines, as determined at the RNA, protein and activity levels, was at least 10-fold higher than that of wild-type plants. Subsequent tocopherol analysis of leaf and seed material revealed that the increased HPPD expression resulted in up to a 37% increase in leaf tocopherol levels and a 28% increase in seed tocopherol levels relative to control plants. These results demonstrate that HPPD activity, and likely HGA levels, are at least one factor limiting the production of tocopherols in photosynthetic and non-photosynthetic plant tissues.  相似文献   

7.
A high degree of selectivity toward the target site of the pest organism is a desirable attribute for new safer agrochemicals. To assist in the design of novel herbicides, we determined the crystal structures of the herbicidal target enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD; EC 1.13.11.27) from the plant Arabidopsis thaliana with and without an herbicidal benzoylpyrazole inhibitor that potently inhibits both plant and mammalian HPPDs. We also determined the structure of a mammalian (rat) HPPD in complex with the same nonselective inhibitor. From a screening campaign of over 1000 HPPD inhibitors, six highly plant-selective inhibitors were found. One of these had remarkable (>1600-fold) selectivity toward the plant enzyme and was cocrystallized with Arabidopsis HPPD. Detailed comparisons of the plant and mammalian HPPD-ligand structures suggest a structural basis for the high degree of plant selectivity of certain HPPD inhibitors and point to design strategies to obtain potent and selective inhibitors of plant HPPD as agrochemical leads.  相似文献   

8.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.  相似文献   

9.
The transformation of 4-hydroxyphenylpyruvate to homogentisate, catalyzed by 4-hydroxyphenylpyruvate dioxygenase (HPPD), plays an important role in degrading aromatic amino acids. As the reaction product homogentisate serves as aromatic precursor for prenylquinone synthesis in plants, the enzyme is an interesting target for herbicides. In this study we report the first x-ray structures of the plant HPPDs of Zea mays and Arabidopsis in their substrate-free form at 2.0 A and 3.0 A resolution, respectively. Previous biochemical characterizations have demonstrated that eukaryotic enzymes behave as homodimers in contrast to prokaryotic HPPDs, which are homotetramers. Plant and bacterial enzymes share the overall fold but use orthogonal surfaces for oligomerization. In addition, comparison of both structures provides direct evidence that the C-terminal helix gates substrate access to the active site around a nonheme ferrous iron center. In the Z. mays HPPD structure this helix packs into the active site, sequestering it completely from the solvent. In contrast, in the Arabidopsis structure this helix tilted by about 60 degrees into the solvent and leaves the active site fully accessible. By elucidating the structure of plant HPPD enzymes we aim to provide a structural basis for the development of new herbicides.  相似文献   

10.
Indirect immunofluorescence of mouse caput and caudal sperm shows distinctly different distributions of Spam1 protein, which is associated with structural and functional differences of the molecule. Spam1 is uniformly distributed over the surface of the head of caput sperm while in caudal sperm, light and confocal microscopy demonstrate that it is localized to the anterior and posterior regions. The hyaluronidase activity of Spam1 in acrosome‐intact caput sperm was significantly lower (4.3‐fold; P < 0.0001) than that of caudal sperm. The increase in enzymatic activity in caudal sperm is accompanied by a reduction in the molecular weight (MW): in extracts from caput sperm there was a major band at ∼74 kDa and a minor band at ∼67 kDa; while for the cauda there was a major band at ∼67 kDa and minor bands at ∼70 and ∼56 kDa. Additionally, the bands from caput sperm were 4.9 to 7.7‐fold less intense than those from caudal sperm. This decreased affinity for the polyclonal anti‐Spam1 suggests the presence of different surface characteristics of the molecule from the two epididymal regions. Computer analysis of the protein structure from Spam1 cDNA sequence reveals four putative N‐linked glycosylation sites, and enzymatic deglycosylation suggests that all sites are functional. After endoglycosidase activity of extracts from caput and caudal sperm, both show a major band with a MW of ∼56 kDa, the size of the membrane‐anchored polypeptide backbone. Based on the difference in size and intensity of the Spam1 bands and hyaluronidase activities from caput and caudal sperm, the data suggest that the activation of Spam1 during epididymal maturation is regulated by deglycosylation. Mol. Reprod. Dev. 52:196–206, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
An aromatic amino acid aminotransferase (aromAT) was purified over 33 000-fold from the shoots and primary leaves of mung beans (Vigna radiata L. Wilczek). The enzyme was purified by ammonium sulfate precipitation, gel filtration and anion exchange followed by fast protein liquid chromatography using Mono Q and Phenylsuperose. The relative amino transferase activities using the most active amino acid substrates were: tryptophan 100, tyrosine 83 and phenylalanine 75, withK m values of 0.095, 0.08 and 0.07 mM, respectively. The enzyme was able to use 2-oxoglutarate, oxaloacetate and pyruvate as oxo acid substrates at relative activities of 100, 128 and 116 andK m values of 0.65, 0.25 and 0.24 mM, respectively. In addition to the aromatic amino acids the enzyme was able to transaminate alanine, arginine, aspartate, leucine and lysine to a lesser extent. The reverse reactions between glutamate and the oxo acids indolepyruvate and hydroxyphenylpyruvate occurred at 30 and 40% of the forward reactions of tryptophan and tyrosine, withK m, values of 0.1 and 0.8 mM, respectively. The enzyme was not inhibited by indoleacetic acid, although -naphthaleneacetic acid did inhibit slightly. Addition of the cofactor pyridoxal phosphate only slightly increased the activity of the purified enzyme. The aromAT had a molecular weight of 55–59 kDa. The possible role of the aromAT in the biosynthesis of indoleacetic acid is discussed.Abbreviations AAT aspartate aminotransferase - aromAT aromatic amino acid aminotransferase - FPLC fast protein liquid chromatography - IPyA indolepyruvate - OHPhPy hydroxyphenylpyruvate - PLP pyridoxal phosphate - TAT tryptophan aminotransferase  相似文献   

12.
13.
14.
An isozyme of acid phosphatase-1, acid phosphatase-11, was purified from the leaves of tomato (Lycopersicon esculentum) to homogeneity and characterized. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis with or without sodium dodecyl sulfate. The gel filtration analysis showed that the native molecule had a relative molecular mass of about 61 kilodaltons (kDa). The relative molecular mass of the subunit on gel electrophoresis with sodium dodecyl sulfate was about 32 kDa, indicating that the native form of the enzyme was a homodimer. It was suggested by periodic acid-Schiff staining on the gel that the enzyme was a glycoprotein. The Km for p-nitrophenylphosphate was 2.9 × 10?3 m. The enzyme had a pH optimum of 4.5 in 0.15 m potassium acetate buffer with p-nitrophenylphosphate as a substrate. This enzyme was activated by divalent metal ions, such as Zn2+, Mg2+, and Mn2+. The N-terminal amino acids were sequenced after the purified enzyme was treated with pyroglutamylpeptidase. It was suggested that the N-terminal amino acid was pyroglutamate.  相似文献   

15.
Aspergillus terreus MTCC 11096 isolated from the soils of agricultural fields cultivating sweet sorghum was previously identified to produce feruloyl esterases (FAEs). The enzymes responsible for feruloyl esterase activity were purified to homogeneity and named as AtFAE‐1, AtFAE‐2, and AtFAE‐3. The enzymes were monomeric having molecular masses of 74, 23 and 36 kDa, respectively. Active protein bands were identified by a developed pH‐dependent zymogram on native PAGE. The three enzymes exhibited variation in pH tolerance ranging between pH 5–8 and thermostability of up to 55°C. Inhibition studies revealed that the serine residue was essential for feruloyl esterase activity; moreover aspartyl and glutamyl residues are not totally involved at the active site. Metal ions such as Ca2+, K+, and Mg2+ stabilized the enzyme activity for all three FAEs. Kinetic data indicated that all three enzymes showed catalytic efficiencies (kcat/Km) against different synthesized alkyl and aryl esters indicating their broad substrate specificity. The peptide mass fingerprinting by MALDI/TOF‐MS analysis and enzyme affinity toward methoxy and hydroxy substituents on the benzene ring revealed that the AtFAE‐1 belonged to type A while AtFAE‐2 and AtFAE‐3 were type C FAE. The FAEs could release 65 to 90% of ferulic acid from agrowaste substrates in the presence of xylanase. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:924–932, 2013  相似文献   

16.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

17.
α-Amylase from Saccharomycopsis fibuligera R-64 was successfully purified by butyl Toyopearl hydrophobic interaction chromatography, followed by Sephadex G-25 size exclusion and DEAE Toyopearl anion exchange chromatography. The enzyme has a molecular mass of 54 kDa, as judged by SDS PAGE analysis. Upon tryptic digestion, two major fragments with relative molecular masses of 39 kDa and 10 kDa, which resemble the A/B and C-terminal domains in the homologous Taka-amylase, were obtained and were successfully separated with the Sephadex G-50 size exclusion column. The 39-kDa fragment demonstrated a similar amylolytic activity to that of the undigested enzyme. However, it was found that the K m value of the 39-kDa fragment was about two-times higher than that of the undigested enzyme. Moreover, thermostability studies showed a lower half-life time for the 39-kDa fragment. These findings suggest that the 39-kDa fragment is the catalytic domain, while the 10-kDa fragment is the C-terminal one, which plays a role in thermostability and starch binding. Although the undigested enzyme is able to act on raw starches at room temperature, with maize starches as the best substrate, neither the undigested enzyme nor the fragments adsorb the tested raw starches. These results propose Saccharomycopsis fibuligera α-amylase as a raw starch-digesting but not adsorbing amylase, with a similar domain organization to that of Taka-amylase A.  相似文献   

18.
An aminopeptidase A (EC 3.4.11.7) was purified to homogeneity from Bacillus licheniformis NS115 and its enzymatic properties were characterized. The enzyme had an apparent molecular mass of 64 kDa, consisting of heterodimeric 42 kDa and 22 kDa subunits, and is a new enzyme from N-terminal analysis of heavy and light subunits. The light suhunit had no catalytic activity against the substrate and apparent Km values of heavy and whole enzyme were 0.26 and 0.087 mM of γ-glutamyl-p-nitroanilide, respectively.  相似文献   

19.
Shah DD  Conrad JA  Heinz B  Brownlee JM  Moran GR 《Biochemistry》2011,50(35):7694-7704
4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) each catalyze similar complex dioxygenation reactions using the substrates 4-hydroxyphenylpyruvate (HPP) and dioxygen. The reactions differ in that HPPD hydroxylates at the ring C1 and HMS at the benzylic position. The HPPD reaction is more complex in that hydroxylation at C1 instigates a 1,2-shift of an aceto substituent. Despite that multiple intermediates have been observed to accumulate in single turnover reactions of both enzymes, neither enzyme exhibits significant accumulation of the hydroxylating intermediate. In this study we employ a product analysis method based on the extents of intermediate partitioning with HPP deuterium substitutions to measure the kinetic isotope effects for hydroxylation. These data suggest that, when forming the native product homogentisate, the wild-type form of HPPD produces a ring epoxide as the immediate product of hydroxylation but that the variant HPPDs tended to also show the intermediacy of a benzylic cation for this step. Similarly, the kinetic isotope effects for the other major product observed, quinolacetic acid, showed that either pathway is possible. HMS variants show small normal kinetic isotope effects that indicate displacement of the deuteron in the hydroxylation step. The relatively small magnitude of this value argues best for a hydrogen atom abstraction/rebound mechanism. These data are the first definitive evidence for the nature of the hydroxylation reactions of HPPD and HMS.  相似文献   

20.
An enzyme, which possesses glutathione S‐transferase (GST) activity, has been found in the midgut of the saturniid moth, Samia cynthia pryeri. The enzyme was initially purified into homogeneity by ammonium sulphate fractionation, affinity chromatography, and ion‐exchange chromatography. The resulting enzyme revealed a single band with a molecular mass of 23 kDa by sodium dodecyl sulfate polyacrylamide electrophoresis under reduced conditions. When tested with 1‐chloro‐2,4‐dinitrobenzene, a universal substrate of GST, the purified remnants had an optimum pH of 8.0 for enzymatic activity, and was fairly stable at pH 5–9 and at temperatures below 40°C. The enzyme was also responsive to 4‐hydroxynonenal, a cytotoxic lipid‐peroxidation product. The present GST was inhibited by organophosphorus and pyrethroid insecticides including fenitrothion, permethrin and deltamethrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号