首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Body mass is often viewed as a proxy of past access to resources and of future survival and reproductive success. Links between body mass and survival or reproduction are, however, likely to differ between age classes and sexes. Remarkably, this is rarely taken into account in selection analyses. Selection on body mass is likely to be the primary target accounting for juvenile survival until reproduction but may weaken after recruitment. Males and females also often differ in how they use resources for reproduction and survival. Using a long‐term study on body mass and annual survival in yellow‐bellied marmots (Marmota flaviventer), we show that body mass was under stabilizing viability selection in the first years of life, before recruitment, which changed to positive directional selection as age increased and animals matured. We found no evidence that viability selection across age classes on body mass differed between sexes. By investigating the link between running speed and body mass, we show that the capacity to escape predators was not consistent across age classes and followed a quadratic relationship at young ages only. Overall, our results indicate that mature age classes exhibit traditional patterns of positive viability selection on body mass, as expected in a hibernating mammal, but that mass in the first years of life is subjected to stabilizing selection which may come from additional predation pressures that negate the benefits of the largest body masses. Our study highlights the importance to disentangle selection pressures on traits across critical age (or life) classes.  相似文献   

2.
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   

3.
Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.  相似文献   

4.
Current methods for measuring selection with longitudinal data have been developed with the assumption that episodes of selection are sequential. However, a number of empirical examinations have demonstrated that natural and sexual selection may act concurrently and in opposing directions. Other recent work has highlighted the difficulty of assigning fitness values for survival when reproduction and mortality within a population temporally overlap. I treat these as facets of a single problem; how to analyze selection where mortality and reproduction are concurrent. To address this problem, I formalize a method to estimate total fitness of individuals over a period of time utilizing longitudinal data. I then show how the fitness may be partitioned to provide two separate estimates of fitness for reproductive opportunity and reproductive success. In addition, another total fitness estimate for the period can be obtained from the two partitioned estimates. This procedure will allow calculation of total fitness where there are some missing datapoints for reproductive success of an individual. A simulation indicates that bias is generally low for the various fitness estimates. These methods should expand our ability to understand the interaction of different selection episodes.  相似文献   

5.
Many field measurements of viability and sexual selection on body size indicate that large size is favoured. However, life-history theory predicts that body size may be optimized and that patterns of selection may often be stabilizing rather than directional. One reason for this discrepancy may be that field estimates of selection tend to focus on limited components of fitness and may not fully measure life-history trade-offs. We use an 8-year, demographic field study to examine both sexual selection and lifetime selection on body size of a coral reef fish (the bicolour damselfish, Stegastes partitus). Selection via reproductive success of adults was very strong (standardized selection differential=1.04). However, this effect was balanced by trade-offs between large adult size and reduced cumulative survival during the juvenile phase. When we measured lifetime fitness (net reproductive rate), selection was strongly stabilizing and only weakly directional, consistent with predictions from life-history theory.  相似文献   

6.
Pollination syndromes suggest that convergent evolution of floral traits and trait combinations reflects similar selection pressures. Accordingly, a pattern of selection on floral traits is expected to be consistent with increasing the attraction and pollen transfer of the important pollinator. We measured individual variation in six floral traits and yearly and lifetime total plant seed and fruit production of 758 plants across nine years of study in natural populations of Ruby-Throated Hummingbird-pollinated Silene virginica. The type, strength, and direction of selection gradients were observed by year, and for two cohorts selection was estimated through lifetime maternal fitness. Positive directional selection was detected on floral display height in all years of study and stigma exsertion in all years but one. Significant quadratic and correlational selection gradients were rare. However, a canonical analysis of the gamma matrix indicated nonlinear selection was common; if significant curvature was detected it was convex with one exception. Our analyses demonstrated selection favored trait combinations and the integration of floral features of attraction and pollen transfer efficiency that were consistent with the hummingbird pollination syndrome.  相似文献   

7.
The use of regression analysis has been instrumental in allowing evolutionary biologists to estimate the strength and mode of natural selection. Although directional and correlational selection gradients are equal to their corresponding regression coefficients, quadratic regression coefficients must be doubled to estimate stabilizing/disruptive selection gradients. Based on a sample of 33 papers published in Evolution between 2002 and 2007, at least 78% of papers have not doubled quadratic regression coefficients, leading to an appreciable underestimate of the strength of stabilizing and disruptive selection. Proper treatment of quadratic regression coefficients is necessary for estimation of fitness surfaces and contour plots, canonical analysis of the gamma matrix, and modeling the evolution of populations on an adaptive landscape.  相似文献   

8.
Abstract.— Selection will result in observable changes in traits only if it acts consistently in space and time, but few estimates of selection in natural populations have been temporally replicated. Here we estimate viability selection on nestling growth rates for 13 cohorts (1989–2001) of red squirrels (Tamiasciurus hudsonicus) from a natural population located in southwestern Yukon, Canada. Directional selection on nestling growth rates varied in magnitude and direction from one cohort to the next. The magnitude of directional selection was relatively weak in most years (median (β= 0.24), but there were episodes of very strong viability selection ((β > 0.5) in some cohorts. We found no evidence of significant stabilizing or disruptive selection on this trait. Examination of viability selection episodes over shorter time periods suggested that the strength of selection on juveniles in this population was positively related to the time scale over which selection was measured. Viability selection from birth to emergence from the natal nest (50 days of age) and from emergence to successful recruitment (100 days of age) were positively correlated, but were both independent of selection on nestling growth rates from recruitment to potential breeding age (one year). The strength of directional selection on growth rates prior to recruitment was negatively correlated with spring temperature whereas selection from recruitment to breeding was positively correlated with the abundance of spruce cones produced in the previous fall. Episodes of strong directional selection from birth to breeding age appear to be due to potentially rare combinations of environmental conditions. As a result, predicting the occurrence of very strong episodes of selection will be extremely difficult, but predicting the microevolutionary responses to observed selection on individual cohorts remains feasible.  相似文献   

9.
Sexual dimorphism evolves when selection favors different phenotypic optima between the sexes. Such sexually antagonistic selection creates intralocus sexual conflict when traits are genetically correlated between the sexes and have sex‐specific optima. Brown anoles are highly sexually dimorphic: Males are on average 30% longer than females and 150% heavier in our study population. Viability selection on body size is known to be sexually antagonistic, and directional selection favors large male size whereas stabilizing selection constrains females to remain small. We build on previous studies of viability selection by measuring sexually antagonistic selection using reproductive components of fitness over three generations in a natural population of brown anoles. We estimated the number of offspring produced by an individual that survived to sexual maturity (termed RSV), a measure of individual fitness that includes aspects of both individual reproductive success and offspring survival. We found directional selection on male body size, consistent with previous studies of viability selection. However, selection on female body size varied among years, and included periods of positive directional selection, quadratic stabilizing selection, and no selection. Selection acts differently in the sexes based on both survival and reproduction and sexual conflict appears to be a persistent force in this species.  相似文献   

10.
How variation and variability (the capacity to vary) may respond to selection remain open questions. Indeed, effects of different selection regimes on variational properties, such as canalization and developmental stability are under debate. We analyzed the patterns of among‐ and within‐individual variation in two wing‐shape characters in populations of Drosophila melanogaster maintained under fluctuating, disruptive, and stabilizing selection for more than 20 generations. Patterns of variation in wing size, which was not a direct target of selection, were also analyzed. Disruptive selection dramatically increased phenotypic variation in the two shape characters, but left phenotypic variation in wing size unaltered. Fluctuating and stabilizing selection consistently decreased phenotypic variation in all traits. In contrast, within‐individual variation, measured by the level of fluctuating asymmetry, increased for all traits under all selection regimes. These results suggest that canalization and developmental stability are evolvable and presumably controlled by different underlying genetic mechanisms, but the evolutionary responses are not consistent with an adaptive response to selection on variation. Selection also affected patterns of directional asymmetry, although inconsistently across traits and treatments.  相似文献   

11.
The male genitalia of arthropods consistently show negative static allometry (the genitalia of small males of a species are disproportionally large, and those of large males are disproportionally small). We discuss relations between the ‘one‐size‐fits‐all’ hypothesis to explain this allometry and the regimes of selection that may be acting on genitalia. We focus on the contrasts between directional vs. stabilizing selection, and natural vs. sexual selection. In addition, we point out some common methodological problems in studies of genital allometry. One‐size‐fits‐all types of arguments for negative allometry imply net stabilizing selection, but the effects of stabilizing selection on allometry will be weaker when the correlation between body size and the trait size is weaker. One‐size‐fits‐all arguments can involve natural as well as sexual selection, and negative allometry can also result from directional selection. Several practical problems make direct tests of whether directional or stabilizing selection is acting difficult. One common methodological problem in previous studies has been concentration on absolute rather than relative values of the allometric slopes of genitalia; there are many reasons to doubt the usefulness of comparing absolute slopes with the usual reference value of 1.00. Another problem has been the failure to recognize that size and shape are independent traits of genitalia; rapid divergence in the shape of genitalia is thus not paradoxical with respect to the reduced variation in their sizes that is commonly associated with negative allometric scaling.  相似文献   

12.
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima.  相似文献   

13.
Variation in life‐history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life‐history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system.  相似文献   

14.
We explore the effects of linear and quadratic reaction norms on heritability and directional selection. Genetic variation for reaction norm parameters can alter the heritability of traits; the magnitude of the heritability depends upon both the environment and the correlation among the parameters. Genetic variation for reaction norm parameters can alter the response to directional selection. Selection on a trait in one environment can shift both the mean of the trait measured across environments and the plasticity of the trait; the signs and magnitudes of these responses depend on the correlations among the parameters of the reaction norm. Our model is consistent with the results of ten experiments for selection on a trait in a single environment. In all experiments, selection towards the overall mean of the population always resulted in a relatively lower plasticity than selection away from the overall mean. Our model was able to predict the results of two experiments for selection on a trait index calculated over more than one environment. Predictions were good for the direct response to selection but poorer for the correlated response to selection. Our results indicate the need for more data on the effects of environment on genetic parameters, especially correlations among reaction norm parameters.  相似文献   

15.
Conflicts of selection on diaspore traits throughout the dispersal cycle can limit the evolutionary consequences of seed dispersal. However, these conflicts have never been investigated in directed dispersal systems. We explored conflicts of selection through life stages of dispersal in the myrmecochorous herb Helleborus foetidus. Seeds are subject to two contrasting partial selective scenarios. Undispersed seeds are subject to positive directional selection on seed size characters, whereas seeds dispersed are subject to stabilizing selection for size. In both scenarios, seedling establishment determined the magnitude and direction of selection. This does not reflect ant preferences for seed size. However, total selection still depends largely on ant activity, as ants control the relative importance of each selective scenario. We advocate the use of analytical approaches combining multiplicative fitness and microenvironment‐specific selection to more realistically estimate the realized selection on traits functional during several life stages. This approach may be extended to any organism dispersing offspring to different environments.  相似文献   

16.
When populations are partially inbred due to the population structure or to a mixed mating system like partial self-fertilization, some individuals will be more inbred than others. This heterogeneity among individuals in the history of inbreeding can greatly complicate the interpretation of measures of quantitative genetic variability when the traits studied exhibit inbreeding depression. Partial inbreeding can also bias measures of phenotypic selection toward the detection of strong directional and stabilizing selection. In this paper, data are presented from several inbreeding experiments conducted on two partially selfing, annual populations of the monkeyflower Mimulus guttatus that show that the means of many of the morphological and phenological traits measured were affected by inbreeding. These findings imply that estimates of heritabilities and additive genetic covariances would not reflect the potential for these populations to respond to selection. Phenotypic selection analyses conducted on naturally occurring plants, involving linear regressions of relative seed production on the traits, revealed significant directional selection on many of the same quantitative traits measured in the inbreeding studies. However, when the same selection analyses were performed on plants with known histories of inbreeding, part of the statistical relationship between relative seed number and the traits was found to be due to the mating system: inbred individuals had both lower seed production and different mean values for the traits than outcrossed individuals. It is also shown, with a hypothetical example, that partial inbreeding can bias measures of stabilizing selection toward the detection of strong stabilizing selection. Partial inbreeding therefore tends to make directional and stabilizing selection appear stronger than it is, and it may be that natural selection in the wild is actually weaker than many studies of partially inbred species suggest.  相似文献   

17.
Lifetime reproductive success may vary considerably with birth date. I measured phenotypic selection on female birth date in a viviparous teleost fish (Embiotocidae: Micrometrus minimus) by sampling birth-date cohorts over time in Tomales Bay, California. Four episodes of selection were measured: survival from birth to first reproduction, reproductive success in the first breeding season, survival to second reproduction, and reproductive success in the second season. Birth date had a significant impact on fitness in the first two episodes. Early born females were more successful in their first breeding season than late born females (directional selection on birth date), but early born females were less likely to survive the period between birth and first reproduction, relative to females born in the middle of the season (stabilizing selection on birth date). The final two episodes of selection had no detectable effect on birth date. Because of the relationship between birth date and survival in the first year, overall selection on female birth date was stabilizing.  相似文献   

18.
Estimates of the form and magnitude of natural selection based on phenotypic relationships between traits and fitness measures can be biased when environmental factors influence both relative fitness and phenotypic trait values. I quantified genetic variances and covariances, and estimated linear and quadratic selection coefficients, for seven traits of an annual plant grown in the field. For replicates of 50 paternal half-sib families, coefficients of selection were calculated both for individual phenotypic values of the traits and for half-sib family mean values. The potential for evolutionary response was supported by significant heritability and phenotypic directional selection for several traits but contradicted by the absence of significant genetic variation for fitness estimates and evidence of bias in phenotypic selection coefficients due to environmental covariance for at least two of the traits analysed. Only studies of a much wider range of organisms and traits will reveal the frequency and extent of such bias.  相似文献   

19.
Animal signals are complex, comprising multiple components that receivers may use to inform their decisions. Components may carry information of differing value to receivers, and selection on one component could modulate or reverse selection on another, necessitating a multivariate approach to estimating selection gradients. However, surprisingly few empirical studies have estimated the strength of phenotypic selection on complex signals with appropriate design and adequate power to detect nonlinear selection. We used phonotaxis assays to measure sexual selection on the advertisement signal of Cope's gray tree frog, Hyla chrysoscelis. Female preferences were assessed for five signal components using single‐ and two‐stimulus behavioral assays. Linear, quadratic, and correlational selection gradients were estimated from the single‐stimulus data. Significant directional selection is acting on call duration, call rate, pulse rate, and relative amplitude; stabilizing selection is acting on call duration and call rate. Under the two‐stimulus paradigm, conclusions were qualitatively different, revealing nonlinear selection on all components except call duration. For individual subjects, the outcomes of single‐ and two‐stimulus trials were frequently discordant, suggesting that the choice of testing paradigm may affect conclusions drawn from experiments.  相似文献   

20.
It is generally accepted that postcopulatory sexual selection drives rapid divergence of genital morphology among isolated populations. The mode of selection operating upon genitalia can be explored by comparing patterns of population divergence in genetic and genitalic traits. We collected Antichiropus variabilis millipedes from eight localities across the species range. Levels of among-population genetic divergence, at microsatellite loci, and the mitochondrial COI gene were very high. Following geometric morphometric analyses, genital morphology was also found to be highly divergent among the populations surveyed, whereas head morphology had not diverged as markedly. However, pairwise comparisons of F(ST) and P(ST) showed that among-population divergence in both genital and head shape was significantly lower than that experienced by neutral genetic markers. Our results suggest that the genitalia of A. variabilis are currently experiencing a period of stabilizing selection, the mode of selection expected for genitalia that function in species recognition via a "lock-and-key" mechanism. Our results demonstrate that although genital morphology can clearly diverge among genetically isolated populations, divergence is not necessarily as rapid as commonly argued, and continuous directional sexual selection may not always underpin the evolutionary divergence of male genitalia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号