首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligr M  Patwa RR  Daniels G  Pan L  Wu X  Li Y  Tian L  Wang Z  Xu R  Wu J  Chen F  Liu J  Wei JJ  Lee P 《PloS one》2011,6(10):e26250
  相似文献   

2.
3.
Cyclin E as a coactivator of the androgen receptor   总被引:7,自引:0,他引:7  
Androgens play an important role in the growth of prostate cancer, but the molecular mechanism that underlies development of resistance to antiandrogen therapy remains unknown. Cyclin E has now been shown to increase the transactivation activity of the human androgen receptor (AR) in the presence of its ligand dihydrotestosterone. The enhancement of AR activity by cyclin E was resistant to inhibition by the antiandrogen 5-hydroxyflutamide. Cyclin E was shown to bind directly to the COOH terminus portion of the AB domain of the AR, and to enhance its AF-1 transactivation function. These results suggest that cyclin E functions as a coactivator of the AR, and that aberrant expression of cyclin E in tumors may contribute to persistent activation of AR function, even during androgen ablation therapy.  相似文献   

4.
Prohibitin (PHB) is an evolutionarily conserved protein with multiple functions in both normal and cancer cells. Androgen receptor (AR) was reported to act as a different role in the ER-positive and ER-negative breast cancer. However, little is known about the role of PHB and whether PHB could regulate AR expression in the ER-positive breast cancer. Here, we determined the expression and clinical outcomes of PHB in breast cancer samples using 121 breast cancer tissues and published databases, and investigated the role of PHB in breast cancer cell growth, apoptosis and cell cycle arrest in the ER-positive breast cancer cells. We obtained the expression of PHB is significantly low in breast cancer samples, and low PHB expression positively correlated with poor prognosis of breast cancer. We detected that PHB could inhibit breast cancer cell proliferation, change cell cycle distribution and promote cell apoptosis in the ER-positive breast cancer cells. Moreover, we found PHB could significantly increase AR expression in both mRNA and protein levels in the ER-positive breast cancer cells. Additionally, a significant positive correlation between PHB and AR expression was identified in the 121 breast cancer tissues. PHB and AR expression are associated with prognosis in the ER-positive breast cancer patients. Our results indicate that PHB promotes AR activation in ER-positive breast cancer, making PHB and AR potential molecular targets for ER-positive breast cancer therapy.  相似文献   

5.
The realization, that the androgen receptor (AR) is essential for prostate cancer (PC) even after relapse following androgen deprivation therapy motivated the search for novel types of AR inhibitors. We proposed that targeting AR expression versus its function would work in cells having either wild type or mutant AR as well as be independent of androgen synthesis pathways. Previously, using a phenotypic screen in androgen-independent PC cells we identified a small molecule inhibitor of AR, ARTIK-52. Treatment with ARTIK-52 caused the loss of AR protein and death of AR-positive, but not AR-negative, PC cells. Here we present data that ARTIK-52 induces degradation of AR mRNA through a mechanism that we were unable to establish. However, we found that ARTIK-52 is toxic to breast cancer (BC) cells expressing AR, although they were not sensitive to AR knockdown, suggesting an AR-independent mechanism of toxicity. Using different approaches we detected that ARTIK-52 induces replication-dependent double strand DNA breaks exclusively in cancer cells of prostate and breast origin, while not causing DNA damage, or any toxicity, in normal cells, as well as in non-PC and non-BC tumor cells, independent of their proliferation status. This amazing specificity, combined with such a basic mechanism of toxicity, makes ARTIK-52 a potentially useful tool to discover novel attractive targets for the treatment of BC and PC. Thus, phenotypic screening allowed us to identify a compound, whose properties cannot be predicted based on existing knowledge and moreover, uncover a barely known link between AR and DNA damage response in PC and BC epithelial cells.  相似文献   

6.
Studies have shown that a subgroup of tumor cells possess stemness characteristics having self-renewal capacity and the ability to form new tumors. We sought to identify the plausible stemness factor that determines the “molecular signature” of prostate cancer (PCa) cells derived from different metastases (PC3, PCa2b, LNCaP, and DU145) and whether androgen receptor (AR) influences the maintenance of stemness features. Here we show sex-determining region Y (SRY)-box 2 (SOX2) as a putative stem cell marker in PC3 PCa cells and not in DU145, PCa2b, or LNCaP cells. PCa2b and PC3 cells were derived from bone metastases. PCa2b cells which are positive for the AR failed to demonstrate the expression of either cluster of differentiation 44 (CD44) or SOX2. Knockdown (KD) of AR in these cells did not affect the expression of either CD44 or SOX2. Conversely, PC3 cells, which are negative for AR, expressed both CD44 and SOX2. However, the expression of AR downregulated the expression of both CD44 and SOX2 in PC3 cells. CD44 regulates SOX2 expression as KD of CD44 and reduces SOX2 levels considerably. SOX2 KD attenuated not only the expression of SNAIL and SLUG but also the migration and tumorsphere formation in PC3 cells. Collectively, our findings underscore a novel role of CD44 signaling in the maintenance of stemness and progression of cancer through SOX2 in AR-independent PC3 cells. SOX2 has a role in the regulation of expression of SNAIL and SLUG. SOX2 could be a potential therapeutic target to thwart the progression of SOX2-positive cancer cells or recurrence of androgen-independent PCa.  相似文献   

7.
The importance of androgens and androgen receptors (AR) in primary prostate cancer is well established. Metastatic disease is usually treated with some form of androgen ablation, which is effective for a limited amount of time. The role of AR in prostate cancers that recur despite androgen ablation therapy is less certain. Most of these tumors express prostate specific antigen (PSA), an androgen-regulated gene; moreover, AR is generally highly expressed in recurrent prostate cancer. We propose that AR continues to play a role in many of these tumors and that it is not only the levels of AR, ligands, and co-regulators, but also the changes in cell signaling that induce AR action in recurrent prostate cancer. These pathways are, therefore, potential therapeutic targets.  相似文献   

8.
Endocrine therapy for advanced prostate cancer is based on androgen ablation or blockade of the androgen receptor (AR). AR action in prostate cancer has been investigated in a number of cell lines, their derivatives, and transgenic animals. AR expression is heterogenous in prostate cancer in vivo; it could be detected in most primary tumors and their metastases. However, some cells lack the AR because of epigenetic changes in the gene promoter. AR expression increases after chronic androgen ablation in vitro. In several xenografts, AR upregulation is the most consistent change identified during progression towards therapy resistance. In contrast, the AR pathway may be by-passed during chronic treatment with a nonsteroidal anti-androgen. AR sensitivity in prostate cancer increases as a result of activation of the Ras/mitogen-activated protein kinase pathway. One of the major difficulties in endocrine therapy for prostate cancer is acquisition of agonistic properties of AR antagonists observed in the presence of mutated AR. Enhancement of AR function by associated coactivator proteins has been extensively investigated. Cofactors SRC-1, RAC3, p300/CBP, TIF-2, and Tip60 are upregulated in advanced prostate cancer. Most studies on ligand-independent activation of the AR are focused on Her-2/neu and interleukin-6 (IL-6). On the basis of studies that showed overexpression and activation of the AR in advanced prostate cancer, it was suggested that novel therapies that reduce AR expression will provide a benefit to patients. There is experimental evidence showing that prostate tumor growth in vitro and in vivo is inhibited following administration of chemopreventive drugs or antisense oligonucleotides that downregulate AR mRNA and protein expression.  相似文献   

9.
10.
Despite earlier detection and recent advances in surgery and radiation, prostate cancer is second only to lung cancer in male cancer deaths in the United States. Hormone therapy in the form of medical or surgical castration remains the mainstay of systemic treatment in prostate cancer. Over the last 15 years with the clinical use of prostate specific antigen (PSA), there has been a shift to using hormone therapy earlier in the disease course and for longer duration. Despite initial favorable response to hormone therapy, over a period of time these tumors will develop androgen‐independence that results in death. The androgen receptor (AR) is central to the initiation and growth of prostate cancer and to its response to hormone therapy. Analyses have shown that AR continues to be expressed in androgen‐independent tumors and AR signaling remains intact as demonstrated by the expression of the AR regulated gene, PSA. Androgen‐independent prostate cancers have demonstrated a variety of AR alterations that are either not found in hormone naïve tumors or found at lower frequency. These changes include AR amplification, AR point mutation, and changes in expression of AR co‐regulatory proteins. These AR changes result in a “super AR” that can respond to lower concentrations of androgens or to a wider variety of agonistic ligands. There is also mounting evidence that AR can be activated in a ligand independent fashion by compounds such as growth factors or cytokines working independently or in combination. These growth factors working through receptor tyrosine kinase pathways may promote AR activation and growth in low androgen environments. The clinical significance of these AR alterations in the development and progression of androgen‐independent prostate cancer remains to be determined. Understanding the changes in AR signaling in the evolution of androgen‐independent prostate cancer will be key to the development of more effective hormone therapy. © 2003 Wiley‐Liss, Inc.  相似文献   

11.
Although extracellular calcium (Ca(2+)(o)) has been suggested to modulate bone remodeling, the exact mechanism is unclear. This study was performed to explore the signaling pathways of high Ca(2+)(o) that are responsible for controlling the expression of receptor activator of NF-kappaB ligand (RANKL) in mouse osteoblastic cells. As previously reported, high Ca(2+)(o) increased RANKL expression. However, the G protein-coupled Ca(2+)(o)-sensing receptor (CaSR) was not detected in the primary cultured mouse osteoblastic cell. The inhibition of the pertussis-sensitive G protein, phospholipase C, protein kinase C, intracellular calcium mobilization, p38 MAPK, or phosphoinositide 3-kinase did not block RANKL induction caused by high Ca(2+)(o). In contrast, the inhibition of p44/42 MAPK pathway reduced the RANKL expression induced by high Ca(2+)(o). Moreover, high Ca(2+)(o) activated p44/42 MAPK and MEK1/2. These results suggest that RANKL induction by high Ca(2+)(o) might not be mediated by CaSR and its putative downstream signaling pathways, but the pathway employing p44/42 MAPK is involved in the high Ca(2+)(o)-induced RANKL expression in mouse osteoblastic cells.  相似文献   

12.
13.
14.
Estrogen receptors (ERs) are involved in the development of many types of malignant tumors, in particular, breast cancer. Among others, ERs affect cell growth, proliferation, and differentiation. The microRNA (miRNA) miR-142-3p has been shown to inhibit carcinogenesis by regulating various cellular processes, including cell cycle progression, cell migration, apoptosis, and invasion. It does so via targeting molecules involved in a range of signaling pathways. We surgically collected 20 ER-positive breast cancer samples, each with matched adjacent normal breast tissue, and measured the expression of miR-142-3p via quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics methods, luciferase reporter assay, qRT-PCR, and western blot analysis were used to assess whether miR-142-3p could target ESR1, which encodes the estrogen receptor, in ER-positive breast cancer cells and patient samples. We also restored miRNA expression and performed cell viability, cytotoxicity, and colony formation assays. Western blot analysis and qRT-PCR were used to study the expression of apoptosis and stemness markers. We found that miR-142-3p is downregulated in ER-positive breast cancers. Restoration of miR-142-3p expression in ER-positive breast cancer cells reduced cell viability, induced apoptosis via the intrinsic pathway and decreased both colony formation and the expression of stem cell markers. Bioinformatic analysis predicted miR-142-3p could bind to 3′-untranslated region ESR1 messenger RNA (mRNA). Consistently, we demonstrated that miR-142-3p reduced luciferase activity in ER-positive breast cancer cells, and decreased ESR1 expression in both mRNA and protein levels. The results revealed miR-142-3p and ESR1 expression correlated negatively in ER-positive breast cancer samples. The results suggest miR-142-3p acts as a tumor suppressor via multiple mechanisms. Thus, restoration of miR-142-3p expression, for example, via miRNA replacement therapy, may represent an effective strategy for the treatment of ER-positive breast cancer patients.  相似文献   

15.
16.
Homoharringtonine (HHT), a natural alkaloid derived from the cephalotaxus, exhibited its anti-cancer effects in hematological malignancies clinically. However, its pesticide effects and mechanisms in treating solid tumors remain unclear. In this study, we found that HHT was capable of inhibiting tumor growth after 5-days treatment of breast cancer cells, MCF-7, in vivo. Furthemore, HHT also significantly inhibited the cancer cell growth and induced cell apoptosis in vitro. miRNA sequencing proved miR-18a-3p was noticeably downregulated in the cells after HHT treatment. Moreover, downregulating miR-18a-3p increased HHT-induced cell apoptosis; our data supported that HHT suppressed miR-18a-3p expression and inhibited tumorigenesis might via AKT-mTOR signaling pathway. In conclusion: our study proved that HHT suppressed breast cancer cell growth and promoted apoptosis mediated by regulating of the miR-18a-3p-AKT-mTOR signaling pathway, HHT may be a promising antitumor agent in breast cancer treatment.  相似文献   

17.
目的:研究PES1蛋白与雄激素受体(An)之间的相互作用。方法:利用免疫共沉淀实验检测PES1蛋白与AR之间的相互作用,并进行相互作用定位;利用Western印迹研究PESl对乳腺癌细胞内AR表达水平的影响。结果:免疫共沉淀实验显示PES1蛋白与AR存在相互作用;PES1蛋白的1—110、111-220、221-320和311-588氨基酸残基(aa)区域均能与AR结合,415~588aa不能结合AR;AR的651-918aa区域与PESl结合。PESl不能调节乳腺癌细胞AR的表达水平。结论:PES1多个区域均能与AR相互作用,并且主要结合在AR的转录激活结构域2,为进一步探讨PES1对AR功能的调节奠定了基础。  相似文献   

18.
Breast cancer (BC) and prostate cancer (PC) are the second most common malignant tumors in women and men in western countries, respectively. The risks of death are 14% for BC and 9% for PC. Abnormal estrogen and androgen levels are related to carcinogenesis of the breast and prostate. Estradiol stimulates cancer development in BC. The effect of estrogen on PC is concentration-dependent, and estrogen can regulate androgen production, further affecting PC. Estrogen can also increase the risk of androgen-induced PC. Androgen has dual effects on BC via different metabolic pathways, and the role of the androgen receptor (AR) in BC also depends on cell subtype and downstream target genes. Androgen and AR can stimulate both primary PC and castration-resistant PC. Understanding the mechanisms of the effects of estrogen and androgen on BC and PC may help us to improve curative BC and PC treatment strategies.  相似文献   

19.
20.
CCR6 is the receptor of chemokine CCL20. In the present study, we demonstrated that the surface expression of CCR6 was enhanced on the human HCC cell lines (HuH7, PLC/PRF/5, and HepG2) especially on HuH7 cells, but not on HLE or HLF cells. These HCC cell lines (HuH7, PLC/PRF/5, and HepG2) especially the HuH7 cells secreted a significant amount of CCL20 spontaneously, whereas HLE or HLF did not. Stimulation by CCL20 up-regulated the mRNA expression of CCR6 in HuH7 cells and significantly enhanced the growth of HuH7 cells. CCL20-stimulated growth of HuH7 cells was abrogated by the inhibition of downstream signal transduction pathway mediated by p44/42 MAPK, but not by p38 MAPK or SAPK/JNK. CCR6 expression in human HCC tissues was confirmed by RT-PCR. These results indicate that the growth of a proportion of human HCC cells may be mediated by CCL20-CCR6 axis, like HuH7 cells, in an autocrine or paracrine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号