首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligr M  Patwa RR  Daniels G  Pan L  Wu X  Li Y  Tian L  Wang Z  Xu R  Wu J  Chen F  Liu J  Wei JJ  Lee P 《PloS one》2011,6(10):e26250
  相似文献   

2.
3.
4.
5.
When aberrant, factors critical for organ morphogenesis are also commonly involved in disease progression. FOXA1 (forkhead box A1), also known as HNF3α (hepatocyte nuclear factor 3α), is required for postnatal survival due to its essential role in controlling pancreatic and renal function. In addition to regulating a variety of tissues during embryogenesis and early life, rescue experiments have revealed a specific role for FOXA1 in the postnatal development of the mammary gland and prostate. Activity of the nuclear hormone receptors ERα (oestrogen receptor α) and AR (androgen receptor) is also required for proper development of the mammary gland and prostate respectively. FOXA1 modulates ER and AR function in breast and prostate cancer cells, supporting the postulate that FOXA1 is involved in ER and AR signalling under normal conditions, and that some carcinogenic processes in these tissues stem from hormonally regulated developmental pathways gone awry. In addition to broadly reviewing the function of FOXA1 in various aspects of development and cancer, this review focuses on the interplay of FOXA1/ER and FOXA1/AR, in normal and cancerous mammary and prostate epithelial cells. Given the hormone dependency of both breast and prostate cancer, a thorough understanding of FOXA1's role in both cancer types is critical for battling hormone receptor-positive disease and acquired anti-hormone resistance.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
p53 protein expression and oestrogen and progesterone receptor status in invasive ductal breast carcinomas The p53 protein expression and oestrogen and progesterone receptors status was investigated in correlation to the grade of malignancy of primary breast carcinomas. Our material constituted imprints from surgical biopsies of 75 invasive ductal breast cancer cases. The p53 protein expression was investigated immunocytologically using the monoclonal antibody p53 DO-7 (DAKO). A biochemical DCC method was applied for the detection of oestrogen and progesterone receptors for all tumours. Fifty-one percent of breast cancer cases were p53 protein positive. A statistically significant association of p53 protein expression and high tumour grade was found (chi2=23.72, d.f.=2, P < 0.001). A statistically significant association was also found between oestrogen and progesterone receptor positive cases and the grade of malignancy (P < 0.001). A negative association between p53 protein expression and oestrogen (ER) and progesterone receptors (PgR) positivity was found. From our results it appears that it is possible to distinguish from grade II tumours two subgroups of cases, one with low malignancy potential and p53 (-), ER (+), PgR (+), and another subgroup with high malignancy potential and phenotype p53 (+), ER (-), PgR (-). The last subset of patients could actually benefit from adjuvant therapy.  相似文献   

15.
16.
17.
Endocrine therapy for advanced prostate cancer is based on androgen ablation or blockade of the androgen receptor (AR). AR action in prostate cancer has been investigated in a number of cell lines, their derivatives, and transgenic animals. AR expression is heterogenous in prostate cancer in vivo; it could be detected in most primary tumors and their metastases. However, some cells lack the AR because of epigenetic changes in the gene promoter. AR expression increases after chronic androgen ablation in vitro. In several xenografts, AR upregulation is the most consistent change identified during progression towards therapy resistance. In contrast, the AR pathway may be by-passed during chronic treatment with a nonsteroidal anti-androgen. AR sensitivity in prostate cancer increases as a result of activation of the Ras/mitogen-activated protein kinase pathway. One of the major difficulties in endocrine therapy for prostate cancer is acquisition of agonistic properties of AR antagonists observed in the presence of mutated AR. Enhancement of AR function by associated coactivator proteins has been extensively investigated. Cofactors SRC-1, RAC3, p300/CBP, TIF-2, and Tip60 are upregulated in advanced prostate cancer. Most studies on ligand-independent activation of the AR are focused on Her-2/neu and interleukin-6 (IL-6). On the basis of studies that showed overexpression and activation of the AR in advanced prostate cancer, it was suggested that novel therapies that reduce AR expression will provide a benefit to patients. There is experimental evidence showing that prostate tumor growth in vitro and in vivo is inhibited following administration of chemopreventive drugs or antisense oligonucleotides that downregulate AR mRNA and protein expression.  相似文献   

18.
19.
Molecular regulation of androgen action in prostate cancer   总被引:1,自引:0,他引:1  
  相似文献   

20.
High androgen receptor (AR) level in primary tumour predicts increased prostate cancer-specific mortality. However, the mechanisms that regulate AR function in prostate cancer are poorly known. We report here a new paradigm for the forkhead protein FoxA1 action in androgen signalling. Besides pioneering the AR pathway, FoxA1 depletion elicited extensive redistribution of AR-binding sites (ARBs) on LNCaP-1F5 cell chromatin that was commensurate with changes in androgen-dependent gene expression signature. We identified three distinct classes of ARBs and androgen-responsive genes: (i) independent of FoxA1, (ii) pioneered by FoxA1 and (iii) masked by FoxA1 and functional upon FoxA1 depletion. FoxA1 depletion also reprogrammed AR binding in VCaP cells, and glucocorticoid receptor binding and glucocorticoid-dependent signalling in LNCaP-1F5 cells. Importantly, FoxA1 protein level in primary prostate tumour had significant association to disease outcome; high FoxA1 level was associated with poor prognosis, whereas low FoxA1 level, even in the presence of high AR expression, predicted good prognosis. The role of FoxA1 in androgen signalling and prostate cancer is distinctly different from that in oestrogen signalling and breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号