首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn’t localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don’t play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn’t show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated “paradoxical growth effect” at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.  相似文献   

2.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   

3.
M E Cardenas  R S Muir  T Breuder    J Heitman 《The EMBO journal》1995,14(12):2772-2783
The immunosuppressive complexes cyclophilin A-cyclosporin A (CsA) and FKBP12-FK506 inhibit calcineurin, a heterodimeric Ca(2+)-calmodulin-dependent protein phosphatase that regulates signal transduction. We have characterized CsA- or FK506-resistant mutants isolated from a CsA-FK506-sensitive Saccharomyces cerevisiae strain. Three mutations that confer dominant CsA resistance are single amino acid substitutions (T350K, T350R, Y377F) in the calcineurin A catalytic subunit CMP1. One mutation that confers dominant FK506 resistance alters a single residue (W430C) in the calcineurin A catalytic subunit CMP2. In vitro and in vivo, the CsA-resistant calcineurin mutants bind FKBP12-FK506 but have reduced affinity for cyclophilin A-CsA. When introduced into the CMP1 subunit, the FK506 resistance mutation (W388C) blocks binding by FKBP12-FK506, but not by cyclophilin A-CsA. Co-expression of CsA-resistant and FK506-resistant calcineurin A subunits confers resistance to CsA and to FK506 but not to CsA plus FK506. Double mutant calcineurin A subunits (Y377F, W388C CMP1 and Y419F, W430C CMP2) confer resistance to CsA, to FK506 and to CsA plus FK506. These studies identify cyclophilin A-CsA and FKBP12-FK506 binding targets as distinct, highly conserved regions of calcineurin A that overlap the binding domain for the calcineurin B regulatory subunit.  相似文献   

4.
Good fungi gone bad: the corruption of calcineurin   总被引:17,自引:0,他引:17  
Calcineurin is a Ca(2+)/calmodulin-activated protein phosphatase that is conserved in eukaryotes, from yeast to humans, and is the conserved target of the immunosuppressive drugs cyclosporin A (CsA) and FK506. Genetic studies in yeast and fungi established the molecular basis of calcineurin inhibition by the cyclophilin A-CsA and FKBP12-FK506 complexes. Calcineurin also functions in fungi to control a myriad of physiological processes including cell cycle progression, cation homeostasis, and morphogenesis. Recent investigations into the molecular mechanisms of pathogenesis in Candida albicans and Cryptococcus neoformans, two fungi that cause life-threatening infections in humans, have revealed an essential role for calcineurin in morphogenesis, virulence, and antifungal drug action. Novel non-immunosuppressive analogs of the calcineurin inhibitors CsA and FK506 that retain antifungal activity have been identified and hold promise as candidate antifungal drugs. In addition, comparisons of calcineurin function in both fungi and humans may identify fungal-specific components of calcineurin-signaling pathways that could be targeted for therapy, as well as conserved elements of calcium signaling events.  相似文献   

5.
Penicillium marneffei can cause a life-threatening disseminated mycosis in immunocompromised hosts. However, therapeutic strategies for the treatment of this infectious disease are limited. Reports of other fungi suggest that calcineurin inhibitors interact with antifungal agents to improve the treatment outcomes. Here, we evaluated the in vitro interaction of the calcineurin inhibitors cyclosporine A and tacrolimus (FK506) combined with conventional antifungal agents against the pathogenic yeast form of P. marneffei. We demonstrate that the combination of cyclosporine A with amphotericin B, itraconazole, or fluconazole was synergistic for 85, 65, and 30 % of P. marneffei strains, respectively. In contrast, no synergism was observed in all the combinations containing tacrolimus. Furthermore, antagonism was not observed for any combination. In conclusion, the therapeutic potential of a combinatory approach using the calcineurin inhibitor cyclosporine A with conventional antifungal drugs may lead to improved treatment regimens for P. marneffei infections. We propose that mechanism of action studies with cyclosporine A and antifungal agents is needed.  相似文献   

6.
FK506 (tacrolimus) is known as an inhibitor for calcineurin and is used in numerous research fields. It is not clear whether intravenously injected FK506 inhibits neuronal calcineurin. We measured the calcineurin activities of normal and postischemic rat hippocampi after intravenous injection of FK506 (3 mg/kg). Intravenously injected FK506 had no inhibitory effect on calcineurin activity in the hippocampi of normal and postischemic rats, whereas FK506 inhibited the calcineurin in vitro (purified enzyme, hippocampal homogenate, and hippocampal slice culture homogenate). Thus, it is considered that intravenously injected FK506 does not act on intraneuronal calcineurin and that several effects of FK506 are not due to the inhibition of neuronal calcineurin.  相似文献   

7.
The microbial peptidomacrolide FK506 affects many eukaryotic developmental and cell signaling programs via calcineurin inhibition. Prior formation of a complex between FK506 and intracellular FK506-binding proteins (FKBPs) is the precondition for the interaction with calcineurin. A puzzling difference has emerged between the mammalian multidomain protein hFKBP38 and other FKBPs. It was shown that hFKBP38 not only binds to calcineurin but also inhibits the protein phosphatase activity of calcineurin on its own [Shirane, M. and Nakayama, K.I. (2003) Nature Cell Biol. 5, 28-37]. Inherent calcineurin inhibition by hFKBP38 would completely eliminate the need for FK506 in controlling many signal transduction pathways. To address this issue, we have characterized the functional and physical interactions between calcineurin and hFKBP38. A recombinant hFKBP38 variant and endogenous hFKBP38 were tested both in vitro and in vivo. The proteins neither directly inhibited calcineurin activity nor affected NFAT reporter gene activity in SH-SY5Y and Jurkat cells. In addition, a direct physical interaction between calcineurin and hFKBP38 was not detected in co-immunoprecipitation experiments. However, hFKBP38 indirectly affected the subcellular distribution of calcineurin by interaction with typical calcineurin ligands, as exemplified by the anti-apoptotic protein Bcl-2. Our data suggest that hFKBP38 cannot substitute for the FKBP/FK506 complex in signaling pathways controlled by the protein phosphatase activity of calcineurin.  相似文献   

8.
The serine/threonine phosphatase calcineurin complex has been considered a prospective target for developing novel drugs due to its importance in fungal growth, virulence, and stress responses in pathogenic fungi. Therefore, two well-known immunosuppressants, FK506 and cyclosporine A were successfully identified to inhibit calcineurin by combining with FK506-binding protein 12 and cyclophilin A, respectively. However, these drugs are immunosuppressive and may exhibit serious side effects. There is a growing number of literatures reported on further exploring functions of the calcineurin complex as promising antifungal targets. In general, the majority of the calcineurin complex structures are conserved but some functions are species-specific. Nevertheless, there still have a lot of functional motifs in the calcineurin complex that are unexplored. Therefore, further investigation and experimentation into the calcineurin complex are strongly required. This review not only has summarized previous findings but also explored bioinformatics analysis along with structural models of the calcineurin complex for finding fungal-specific regions as potential targets, laying the groundwork for future research into new therapeutics.  相似文献   

9.
10.
Yu DY  Luo J  Bu F  Zhang W  Wei Q 《IUBMB life》2006,58(7):429-433
Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase expressed at high levels in brain. The immunosuppressive drugs cyclosporin A and FK506, but not rapamycin are specific inhibitors of calcineurin, the inhibitory effects of which have been elucidated in the immune system. Here by using these compounds as inhibitors, we assayed the enzyme in mouse brain after injection of 12.5 nmol cyclosporin A, FK506, or rapamycin into the left lateral ventricle of mouse brain. Data from calcineurin activity assay suggest that infusion of cyclosporin A or FK506, rather than rapamycin inhibited calcineurin activity in brain and in a substrate noncompetitive manner, which is revealed by the in vitro enzyme kinetic analysis. Cyclosporin A or FK506 injected into brains also affected the inhibitory effects of cyclosporin A or FK506 added to brain extracts on calcineurin activity. The results may be ascribed to the decreased free immunophilin in brain after infusion of corresponding immunosuppressant, or the fact that two immunophilin-immunosuppressant complexes have not completely identical interaction sites on calcineurin.  相似文献   

11.
Calcineurin is a Ca2+-calmodulin-regulated protein phosphatase that is the target of the immunosuppressive drugs cyclosporin A and FK506. Calcineurin is a heterodimer composed of a catalytic A and a regulatory B subunit. In previous studies, the calcineurin A homologue was identified and shown to be required for growth at 37 degrees C and hence for virulence of the pathogenic fungus Cryptococcus neoformans. Here, we identify the gene encoding the calcineurin B regulatory subunit and demonstrate that calcineurin B is also required for growth at elevated temperature and virulence. We show that the FKR1-1 mutation, which confers dominant FK506 resistance, results from a 6 bp duplication generating a two-amino-acid insertion in the latch region of calcineurin B. This mutation was found to reduce FKBP12-FK506 binding to calcineurin both in vivo and in vitro. Molecular modelling based on the FKBP12-FK506-calcineurin crystal structure illustrates how this mutation perturbs drug interactions with the phosphatase target. In summary, our studies reveal a central role for calcineurin B in virulence and antifungal drug action in the human fungal pathogen C. neoformans.  相似文献   

12.
Calcineurin inhibitors such as cyclosporin A (CsA) and FK506 have been used in solid organ and hematopoietic stem cell transplantations to suppress immune function. However, these immunosuppresants are associated with severe endothelial dysfunction. We investigated whether CsA and FK506 induce endothelial dysfunction using a three-dimensional culture blood vessel model, in which human umbilical vein endothelial cells form and maintain capillary-like tube and lumen structures. We found that FK506, but not CsA, induced breakdown of the tube structures and endothelial cell death. FK506 inhibited calcineurin activity, but FK506-induced tube breakdown and cell death was not suppressed by RNA interference targeting calcineurin Aα. FK506 also induced caspase activation, but caspase inhibition by zVAD(OMe)-fmk failed to suppress FK506-induced tube breakdown and cell death. FK506 induced attenuation of Akt and extracellular-regulated kinase 1/2 (ERK1/2). Furthermore, Akt inhibition by LY294002 or ERK1/2 inhibition by PD98059 induced tube breakdown and cell death. Present results suggest that FK506 induces endothelial dysfunction through attenuation of Akt and ERK1/2 independently of calcineurin inhibition and the caspase pathway.  相似文献   

13.
《Fungal Biology Reviews》2014,28(2-3):56-69
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.  相似文献   

14.
The peptidyl-prolyl isomerases FKBP12 and cyclophilin A (immunophilins) form complexes with the immunosuppressants FK506 and cyclosporin A that inhibit the phosphatase calcineurin. With the yeast two hybrid system, we detect complexes between FKBP12 and the calcineurin A catalytic subunit in both the presence and absence of FK506. Mutations in FKBP12 surface residues or the absence of the calcineurin B regulatory subunit perturb the FK506-dependent, but not the ligand-independent, FKBP12-calcineurin complex. By affinity chromatography, both FKBP12 and cyclophilin A bind calcineurin A in the absence of ligand, and FK506 and cyclosporin A respectively potentiate these interactions. Both in vivo and in vitro, the peptidyl-prolyl isomerase active sites are dispensable for ligand-independent immunophilin-calcineurin complexes. Lastly, by genetic analyses we demonstrate that FKBP12 modulates calcineurin functions in vivo. These findings reveal that immunophilins interact with calcineurin in the absence of exogenous ligands and suggest that immunosuppressants may take advantage of the inherent ability of immunophilins to interact with calcineurin.  相似文献   

15.
Calcineurin   总被引:23,自引:0,他引:23  
  相似文献   

16.
CCK increases the rate of net protein synthesis in rat pancreatic acini by activating initiation and elongation factors required for translation. The immunosuppressant FK506 inhibits the Ca2+-calmodulin-dependent phosphatase calcineurin in pancreatic acinar cells and blocks pancreatic growth induced by chronic CCK treatment. To test a requirement for calcineurin in the activation of the translational machinery stimulated by CCK, we evaluated the effects of FK506 on protein synthesis and on regulatory initiation and elongation factors in rat pancreatic acini in vitro. CCK acutely increased protein synthesis in acini from normal rats with a maximum increase at 100 pM CCK to 170 ± 11% of control. The immunosuppressant FK506 dose-dependently inhibited CCK-stimulated protein synthesis over the same concentration range that blocked calcineurin activity, as assessed by dephosphorylation of the calcineurin substrate calcium-regulated heat-stable protein of 24 kDa. Another immunosuppressant, cyclosporin A, inhibited protein synthesis, but its effects appeared more complex. FK506 also inhibited protein synthesis stimulated by bombesin and carbachol. FK506 did not significantly affect the activity of the initiation factor-2B, or the phosphorylation of the initiation factor-2, ribosomal protein protein S6, or the mRNA cap binding protein eukaryotic initiation factor (eIF) 4E. Instead, blockade of calcineurin with FK506 reduced the phosphorylation of the eIF4E binding protein, reduced the formation of the eIF4F complex, and increased the phosphorylation of eukaryotic elongation factor 2. From these results, we conclude that calcineurin activity is required for protein synthesis, and this action may be related to an effect on the formation of the mRNA cap binding complex and the elongation processes. exocrine pancreas; cholecystokinin; translation initiation factors; protein phosphatase 2B; immunosuppressants  相似文献   

17.
The object of this study was to test whether posaconazole, a broad-spectrum antifungal agent inhibiting ergosterol biosynthesis, exhibits synergy with the β-1,3 glucan synthase inhibitor caspofungin or the calcineurin inhibitor FK506 against the human fungal pathogen Candida albicans. Although current drug treatments for Candida infection are often efficacious, the available antifungal armamentarium may not be keeping pace with the increasing incidence of drug resistant strains. The development of drug combinations or novel antifungal drugs to address emerging drug resistance is therefore of general importance. Combination drug therapies are employed to treat patients with HIV, cancer, or tuberculosis, and has considerable promise in the treatment of fungal infections like cryptococcal meningitis and C. albicans infections. Our studies reported here demonstrate that posaconazole exhibits in vitro synergy with caspofungin or FK506 against drug susceptible or resistant C. albicans strains. Furthermore, these combinations also show in vivo synergy against C. albicans strain SC5314 and its derived echinocandin-resistant mutants, which harbor an S645Y mutation in the CaFks1 β-1,3 glucan synthase drug target, suggesting potential therapeutic applicability for these combinations in the future.  相似文献   

18.
The immunosuppressant Tacrolimus (FK506) has increased the survival rates of organ transplantation. FK506 exerts its immunosuppressive effect by inhibition of the protein phosphatase calcineurin in activated T-cells. Unfortunately, FK506 therapy is associated with undesired non-therapeutic effects involving targets other than calcineurin. To identify these targets we have addressed FK506 cellular toxicity in budding yeast. We show that FK506 increased cell sensitivity upon osmotic challenge independently of calcineurin and the FK506-binding proteins Fpr1p, -2p, -3p, and -4p. FK506 also induced strong amino acid starvation and activation of the general control (GCN) pathway. Tryptophan prototrophy or excess tryptophan overcame FK506 toxicity, showing that tryptophan deprivation mediated this effect. Mutation of the GCN3 and -4 genes partially alleviated FK506 toxicity, suggesting that activation of the GCN pathway by FK506 was also involved in osmotic tolerance. FK506 enhanced osmotic stress-dependent Hog1p kinase phosphorylation that was not accompanied by induction of a Hog1p-dependent reporter. Interestingly, deletion of the GCN2 gene suppressed FK506-dependent Hog1p hyperphosphorylation and restored Hog1p-dependent reporter activity. Conversely, deletion of the HOG1 gene impaired FK506-dependent activation of Gcn2p kinase and translation of a GCN4-LacZ reporter, highlighting functional cross-talk between the Gcn2p and Hog1p protein kinases. Taken together, these data demonstrate that both FK506-induced amino acid starvation and activation of the GCN pathway contribute to cell sensitivity to osmotic stress and reveal a positive regulatory loop between the Hog1p and Gcn2p pathways. Given the conserved nature of Gcn2p and Hog1p pathways, this mechanism of FK506 toxicity could be relevant to the non-therapeutic effects of FK506 therapy.  相似文献   

19.
Calcineurin is required for virulence of Cryptococcus neoformans.   总被引:13,自引:0,他引:13       下载免费PDF全文
A Odom  S Muir  E Lim  D L Toffaletti  J Perfect    J Heitman 《The EMBO journal》1997,16(10):2576-2589
Cyclosporin A (CsA) and FK506 are antimicrobial, immunosuppressive natural products that inhibit signal transduction. In T cells and Saccharomyces cerevisiae, CsA and FK506 bind to the immunophilins cyclophilin A and FKBP12 and the resulting complexes inhibit the Ca2+-regulated protein phosphatase calcineurin. We find that growth of the opportunistic fungal pathogen Cryptococcus neoformans is sensitive to CsA and FK506 at 37 degrees C but not at 24 degrees C, suggesting that CsA and FK506 inhibit a protein required for C. neoformans growth at elevated temperature. Genetic evidence supports a model in which immunophilin-drug complexes inhibit calcineurin to prevent growth at 37 degrees C. The gene encoding the C. neoformans calcineurin A catalytic subunit was cloned and disrupted by homologous recombination. Calcineurin mutant strains are viable but do not survive in vitro conditions that mimic the host environment (elevated temperature, 5% CO2 or alkaline pH) and are no longer pathogenic in an animal model of cryptococcal meningitis. Introduction of the wild-type calcineurin A gene complemented these growth defects and restored virulence. Our findings demonstrate that calcineurin is required for C. neoformans virulence and may define signal transduction elements required for fungal pathogenesis that could be targets for therapeutic intervention.  相似文献   

20.
Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of C. lusitaniae including pseudohyphal growth, serum survival, and growth at 37°C. We found that calcineurin and Crz1, a C. albicans Crz1 homolog acting as a downstream target of calcineurin, are required for C. lusitaniae pseudohyphal growth, a process for which the underlying mechanism remains largely unknown in C. lusitaniae but hyphal growth is fundamental to C. albicans virulence. We demonstrate that calcineurin is required for cell wall integrity, ER stress response, optimal growth in serum, virulence in a murine systemic infection model, and antifungal drug tolerance in C. lusitaniae. To further examine the potential of targeting the calcineurin signaling cascade for antifungal drug development, we examined the activity of a calcineurin inhibitor FK506 in combination with caspofungin against echinocandin resistant C. lusitaniae clinical isolates. Broth microdilution and drug disk diffusion assays demonstrate that FK506 has synergistic fungicidal activity with caspofungin against echinocandin resistant isolates. Our findings reveal that pseudohyphal growth is controlled by the calcineurin signaling cascade, and highlight the potential use of calcineurin inhibitors and caspofungin for emerging drug-resistant C. lusitaniae infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号