共查询到20条相似文献,搜索用时 0 毫秒
1.
Martina Bernardi Elena Albiero Alberta Alghisi Katia Chieregato Chiara Lievore Domenico Madeo Francesco Rodeghiero Giuseppe Astori 《Cytotherapy》2013,15(8):920-929
Background aimsA medium supplemented with fetal bovine serum (FBS) is of common use for the expansion of human mesenchymal stromal cells (MSCs). However, its use is discouraged by regulatory authorities because of the risk of zoonoses and immune reactions. Human platelet lysate (PL) obtained by freezing/thawing disruption of platelets has been proposed as a possible substitute of FBS. The process is time-consuming and not well standardized. A new method for obtaining PL that is based on the use of ultrasound is proposed.MethodsPlatelet sonication was performed by submerging platelet-containing plastic bags in an ultrasonic bath. To evaluate platelet lysis we measured platelet-derived growth factor-AB release. PL efficiency was tested by expanding bone marrow (BM)-MSCs, measuring population doubling time, differentiation capacity and immunogenic properties. Safety was evaluated by karyotyping expanded cells.ResultsAfter 30 minutes of sonication, 74% of platelet derived growth factor-AB was released. PL enhanced BM-MSC proliferation rate compared with FBS. The mean cumulative population doubling (cPD) of cells growth in PL at 10%, 7.5% and 5% was better compared with cPD obtained with 10% FBS. PD time (hours) of MSCs with PL obtained by sonication was shorter than for cPD with PL obtained by freezing/thawing (18.9 versus 17.4, P < 0.01). BM mononucleated cells expressed MSC markers and were able to differentiate into adipogenic, osteogenic and chondrogenic lineages. When BM-MSCs and T cells were co-cultured in close contact, immunosuppressive activity of BM-MSCs was maintained. Cell karyotype showed no genetic alterations.ConclusionsThe proposed method for the production of PL by sonication could be a safe, efficient and fast substitute of FBS, without the potential risks of FBS. 相似文献
2.
《Cytotherapy》2014,16(9):1197-1206
Background aimsThe aim of the study was to evaluate the effect of mesenchymal stromal cells (MSCs) on tumor cell growth in vitro and in vivo and to elucidate the apoptotic and anti-proliferative mechanisms of MSCs on a hepatocellular carcinoma (HCC) murine model.MethodsThe growth-inhibitory effect of MSCs on the Hepa 1–6 cell line was tested by means of methyl thiazolyl diphenyl-tetrazolium assay. Eighty female mice were randomized into four groups: group 1 consisted of 20 mice that received MSCs only by intrahepatic injection; group 2 consisted of 20 HCC mice induced by inoculation of Hepa 1–6 cells into livers without MSC treatment; group 3 consisted of 20 mice that received MSCs after induction of liver cancer; group 4 consisted of 20 mice that received MSCs after induction of liver cancer on top of induced biliary cirrhosis.ResultsMSCs exhibited a growth-inhibitory effect on Hepa 1–6 murine cell line in vitro. Concerning in vivo study, decreases of serum alanine transaminase, aspartate transaminase and albumin levels after MSC transplantation in groups 2 and 3 were found. Gene expression of α-fetoprotein was significantly downregulated after MSC injection in the HCC groups. We found that gene expression of caspase 3, P21 and P53 was significantly upregulated, whereas gene expression of Bcl-2 and survivin was downregulated in the HCC groups after MSC injection. Liver specimens of the HCC groups confirmed the presence of dysplasia. The histopathological picture was improved after administration of MSCs to groups 2 and 3.ConclusionsMSCs upregulated genes that help apoptosis and downregulated genes that reduce apoptosis. Therefore, MSCs could inhibit cell division of HCC and potentiate their death. 相似文献
3.
《Cytotherapy》2019,21(8):870-885
BackgroundSafety and feasibility of a regenerative strategy based on the use of culture-expanded mesenchymal stromal cells (MSCs) have been investigated in phase 2 trials for the treatment of nonunion and osteonecrosis of the femoral head (ONFH). As part of the clinical study, we aimed to evaluate if bone turnover markers (BTMs) could be useful for predicting the regenerative ability of the cell therapy product.Materials and MethodsThe bone defects of 39 patients (nonunion: n = 26; ONFH: n = 13) were treated with bone marrow–derived MSCs, expanded using a clinical-grade protocol and combined with biphasic calcium phosphate before implantation. Bone formation markers, bone-resorption markers and osteoclast regulatory proteins were measured before treatment (baseline) and after 12 and 24 weeks from surgery. At the same time-points, clinical and radiological controls were performed to evaluate the bone-healing progression.ResultsWe found that C-Propeptide of Type I Procollagen (CICP) and C-terminal telopeptide of type-I collagen (CTX) varied significantly, not only over time, but also according to clinical results. In patients with a good outcome, CICP increased and CTX decreased, and this trend was observed in both nonunion and ONFH. Moreover, collagen biomarkers were able to discriminate healed patients from non-responsive patients with a good diagnostic accuracy.DiscussionCICP and CTX could be valuable biomarkers for monitoring and predicting the regenerative ability of cell products used to stimulate the repair of refractory bone diseases. To be translated in a clinical setting, these results are under validation in a currently ongoing phase 3 clinical trial. 相似文献
4.
《Cytotherapy》2014,16(10):1361-1370
Background aimsBone marrow–derived mesenchymal stromal cells (BMSCs) are being extensively investigated as cellular therapeutics for many diseases, including cardiovascular diseases. Although preclinical studies indicated that BMSC transplantation into infarcted hearts improved heart function, there are problems to be resolved, such as the low survival rate of BMSCs during the transplantation process and in the ischemic region with extreme oxidative stress. Autophagy plays pivotal roles in maintaining cellular homeostasis and defending against environmental stresses. However, the precise roles of autophagy in BMSCs under oxidative stress remain largely uncharacterized.MethodsBMSCs were treated with H2O2, and autophagic flux was examined by means of microtubule-associated protein 1A/1B-light chain 3 II/I ratio (LC3 II/I), autophagosome formation and p62 expression. Cytotoxicity and cell death assays were performed after co-treatment of BMSCs by autophagy inhibitor (3-methyladenine) or autophagy activator (rapamycin) together with H2O2.ResultsWe show that short exposure (1 h) of BMSCs to H2O2 dramatically elevates autophagic flux (2- to 4-fold), whereas 6-h prolonged oxidative treatment reduces autophagy but enhances caspase-3 and caspase-6–associated apoptosis. Furthermore, we show that pre- and co-treatment with rapamycin ameliorates H2O2-induced caspase-3 and caspase-6 activation and cell toxicity but that 3-methyladenine exacerbates H2O2-induced cell apoptotic cell death.ConclusionsOur results demonstrate that autophagy is critical for the survival of BMSCs under oxidative conditions. Importantly, we also suggest that the early induction of autophagic flux is possibly a self-defensive mechanism common in oxidant-tolerant cells. 相似文献
5.
Qingdong Guan Peyman Ezzati Victor Spicer Oleg Krokhin Donna Wall John A. Wilkins 《Clinical proteomics》2017,14(1):26
Background
Mesenchymal stem/stromal cells (MSC) display a range of immunoregulatory properties which can be enhanced by the exposure to cytokines such interferon γ (IFN-γ). However the compositional changes associated with the ‘licensing’ of these cells have not been clearly defined. The present study was undertaken to provide a detailed comparative proteomic analysis of the compositional changes that occur in human bone marrow derived MSC following 20 h treatment with IFN-γ.Methods
2D LC MSMS analysis of control and IFN-γ treated cells from 5 different healthy donors provided confident identification of more than 8400 proteins.Results
In total 210 proteins were shown to be significantly altered in their expression levels (≥|2SD|) following IFN-γ treatment. The changes for several of these proteins were confirmed by flow cytometry. STRING analysis determined that approximately 30% of the altered proteins physically interacted in described interferon mediated processes. Comparison of the list of proteins that were identified as changed in the proteomic analysis with data for the same proteins in the Interferome DB indicated that ~35% of these proteins have not been reported to be IFN-γ responsive in a range of cell types.Conclusions
This data provides an in depth analysis of the proteome of basal and IFN-γ treated human mesenchymal stem cells and it identifies a number of novel proteins that may contribute to the immunoregulatory capacity if IFN-γ licensed cells.6.
Anna Lange-Consiglio Stefano Tassan Bruna Corradetti Aurora Meucci Roberta Perego Davide Bizzaro Fausto Cremonesi 《Cytotherapy》2013,15(8):1011-1020
Background aimsThis is the first study to compare the treatment of horse tendon and ligament injuries with the use of mesenchymal stromal cells (MSCs) obtained from two different sources: amniotic membrane (AMSCs) and bone marrow (BM-MSCs). The objective was to prove the ability of AMSCs to exert beneficial effects in vivo.MethodsFive million allogeneic frozen-thawed AMSCs or autologous fresh BM-MSCs were injected intralesionally in horses belonging to group A (51 horses) and group B (44 horses). The interval lesion/implantation was of 6–15 days for the AMSCs and 16–35 days for the BM-MSCs. Healing was assessed clinically and ultrasonographically. Follow-up was monitored for 2 further years from return to full work.ResultsNo significant adverse effects after MSCs treatment were seen in any of the horses studied, independent of the type of stromal cell implanted. All animals belonging to group A resumed their activities between 4–5 months after treatment, whereas animals of group B resumed their activities after 4–12 months. The rate of re-injury in horses treated with AMSCs is lower (4.00%) compared with the average observed when horses were treated with BM-MSCs (23.08%).ConclusionsThe possibility to inject allogeneic AMSCs in real time, before any ultrasonographic change occurs within the injured tendon and ligament, together with the higher plasticity and proliferative capacity of these cells compared with BM-MSCs, represents the main features of interest for this novel approach for the treatment of equine tendon diseases. An obvious active proliferative healing in the area injected with AMSCs makes these cells more effective than BM-MSCs. 相似文献
7.
GABRIELA OTERO CAROLINE AGORIO ALEXANDRA SUJANOV LOURDES ECHARTE ANA TCHEKMEDYIAN MONICA MONTELONGO ALBA MENYOU ANDRES RODRIGUEZ LILIAN DIAZ ISMAEL RODRIGUEZ CRISTINA TOURIÑO 《Cytotherapy》2019,21(2):189-199
Background
Chronic venous leg ulcers (VLUs) are a common problem in clinical practice and available treatments are not satisfactory. The use of adjuvant therapies in combination with lower limb compression may lead to improved healing rates. Chronic wounds are candidates for new strategies in the emergent field of regenerative medicine. Bone marrow–derived cells (BMDCs) contain cells and secrete cytokines known to participate in wound healing. Thus, BMDC therapy seems a logical strategy for the treatment of chronic wounds. Our objective was to evaluate feasibility, safety and initial clinical outcome of autologous BMDC therapy associated with standard treatment in patients with VLUs.Methods
We conducted an open-label, single-arm, prospective pilot clinical trial in four patients with six chronic VLUs. The study protocol was approved by the institutional and national review boards and ethics committees. Bone marrow was harvest, processed and then administered by multiple injections into the ulcers. All patients received standard treatment and non-healing characteristics of the VLUs were confirmed at study entry.Results
Ulcer size and wound pain evaluated 12 months after BMDC treatment were significantly reduced (P < 0.05). BMDC treatment was safe and well tolerated in long-term follow-up.Discussion
Despite the low number of patients studied, our results showed that autologous BMDC treatment could be a useful, feasible and safe procedure to enhance ulcer healing. However, randomized controlled trials with more patients are needed to address this question and translate this approach into clinical practice. 相似文献8.
9.
Julia König Ingrid Lang Monika Siwetz Julia Fröhlich Berthold Huppertz 《Cell and tissue banking》2014,15(2):193-198
The amnionic membrane is a rich source of multipotent mesenchymal stromal cells (hAMSC), which are readily available and show a potential use in regenerative medicine and tissue engineering. Before these cells can be applied clinically, careful characterization is necessary, especially as primary cells are known to change their phenotype in culture. We analyzed the mesenchymal phenotype of hAMSC at different stages after isolation using immunohistochemistry. Shortly after isolation (1 day), 92 % (±7 %) of the hAMSC expressed the mesenchymal marker vimentin, 2 % (±1 %) stained for the epithelial marker cytokeratin-7 and 5 % (±4 %) co-expressed these markers. After 5 days, the double positive cells slightly increased to 7 % (±3 %), while exclusive expression of cytokeratin-7 or vimentin remained unchanged (1 % ± 2 % and 92 % ± 1 %, respectively). After the first passage, all attached cells were vimentin-positive, while 54 % (±9 %) co-expressed cytokeratin-7 and vimentin. Thus, we conclude that under culture, hAMSC adopt a hybrid mesenchymal–epithelial phenotype. It is also essential to perform microscopical examination during the first days after isolation to detect contaminations with human amnion-derived epithelial cells in cultures of hAMSC. 相似文献
10.
Wanyao Xia Yu-Qing Jin James D. Kretlow Wei Liu Wenlong Ding Hengyun Sun Guangdong Zhou Wenjie Zhang Yilin Cao 《Biotechnology letters》2009,31(5):639-646
TGF-β1 plays a necessary and important role in the induction of chondrogenic differentiation of bone marrow stromal cells
(BMSCs). In this study, porcine BMSCs were infected with a replication-deficient adenovirus expression vector carrying the
hTGF-β1 gene. The transduced BMSCs were cultured as pelleted micromasses in vitro for 21 days, seeded onto disk-shaped PGA
scaffolds for 3 days and subsequently implanted into the subcutaneous tissue of mice. BMSCs transduced with AdhTGF-β1 expressed
and secreted more hTGF-β1 protein in vitro than those of the control group. Histological and immunohistological examination
of the pellets revealed robust chondrogenic differentiation. Tissues made from cells transduced with AdhTGF-β1 exhibited neocartilage
formation after 3 weeks in vivo. The neocartilage occupied 42 ± 5% of the total tissue volume which was significantly greater
than that of the control group. Furthermore, there was extensive staining for sulfated proteoglycans and type II collagen
in the AdhTGF-β1 group compared to controls, and quantification of GAG content showed significantly greater amounts of GAG
in experimental groups. The results demonstrate that transfer of hTGF-β1 into BMSCs via adenoviral transduction can induce
chondrogenic differentiation in vitro and enhance chondrogenesis in vivo. 相似文献
11.
《Cytotherapy》2019,21(10):1007-1018
The human umbilical cord has recently emerged as an attractive potential source of mesenchymal stromal cells (MSCs) to be adopted for use in regenerative medicine. Umbilical cord MSCs (UC-MSCs) not only share the same features of all MSCs such as multi-lineage differentiation, paracrine functions and immunomodulatory properties, they also have additional advantages, such as no need for bone marrow aspiration and higher self-renewal capacities. They can be isolated from various compartments of the umbilical cord (UC) and can be used for autologous or allogeneic purposes. In the past decade, they have been adopted in cardiovascular disease and have shown promising results mainly due to their pro-angiogenic and anti-inflammatory properties. This review offers an overview of the biological properties of UC-MSCs describing available pre-clinical and clinical data with respect to their potential therapeutic use in cardiovascular regeneration, with current challenges and future directions discussed. 相似文献
12.
MOHSEN EMADEDIN NARGES LABIBZADEH MAEDE GHORBANI LIASTANI ALIASGHAR KARIMI NEDA JAROUGHI TINA BOLURIEH SEYYEDEH-ESMAT HOSSEINI HOSSEIN BAHARVAND NASSER AGHDAMI 《Cytotherapy》2018,20(10):1238-1246
Background
The intra-articular implantation of mesenchymal stromal cells (MSCs) as a treatment for knee osteoarthritis (OA) is an emerging new therapy. In this study, patients with knee OA received intra-articular implantations of autologous bone marrow–derived MSCs. We sought to assess the safety and efficacy of this implantation.Materials and Methods
This was a phase 1/2 single-center, triple-blind, randomized controlled trial (RCT) with a placebo control. The subjects consisted of patients with knee OA randomly assigned to either an intra-articular implantation of MSCs (40?×?106 cells) or 5 mL normal saline (placebo). Patients were followed up for 6 months after the implantations. The pain level and function improvements for patient-reported outcomes were assessed based on a visual analog scale (VAS), Western Ontario and McMaster Universities Arthritis Index (WOMAC) and its subscales, walking distance, painless walking distance, standing time and knee flexion compared with the placebo group at 3 and 6 months following the implantations.Results
Overall, 43 patients (Kellgren-Lawrence grades 2, 3 and 4) were assigned to either the MSCs (n?=?19) or placebo (n?=?24) group. Patients who received MSCs experienced significantly greater improvements in WOMAC total score, WOMAC pain and physical function subscales and painless walking distance compared with patients who received placebo. There were no major adverse events attributed to the MSC therapy.Conclusion
This randomized, triple-blind, placebo-controlled RCT demonstrated the safety and efficacy of a single intra-articular implantation of 40?×?106 autologous MSCs in patients with knee OA. Intra-articular implantation of MSCs provided significant and clinically relevant pain relief over 6 months versus placebo and could be considered a promising novel treatment for knee OA. We propose that further investigations should be conducted over an extended assessment period and with a larger cohort. 相似文献13.
Background aims
Parotid hypofunction causes life-disrupting effects, and there are no effective medications for xerostomia. We hypothesized that mesenchymal stem cells (MSCs) have repairing effects on parotid glands of ovariectomized (OVX) rats.Methods
Forty-five adult female rats were divided into three equal groups: group I (Control group), group II (OVX-group) and group III (OVX rats that received MSCs at 4 and 8 weeks post-ovariectomy). At 12 weeks post-ovariectomy, histological (Masson's trichrome and periodic acid–Schiff with alcian blue stains), immunohistochemical (caspase-3 and CD44) and morphometric studies and salivary flow rate and saliva pH determination were carried out.Results
Histologically, the OVX group displayed numerous irregular vacuolated acini, thickened septa with marked cellular infiltration and vascular congestion. Degenerated organelles and few or irregular secretory granules with a different density were observed. Caspase-3-positive cells were highly expressed. MSC-treated glands exhibited a considerable degree of preservation of glandular architecture with numerous CD44-expressing and few caspase-3–expressing cells. Significant decrease of the salivary flow rate in the OVX group was detected, which reverted to normal levels in group III.Conclusions
MSCs ameliorated the damaging effects of ovariectomy on the parotid glands. 相似文献14.
Yaoming Nong Changhai Zhang Lu Wei Zhihui Zhang Jun Cheng Lei Wen Zhiyuan Song 《Cytotherapy》2013,15(8):905-919
BackgroundRecently, proof-of-concept experiments have shown that genetically modified bone marrow mesenchymal stromal cells (MSCs) carrying hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were able to express the funny current (If) in vitro, which played a key role in the process of pacemaker generation for heart rate, and were capable of pacemaker function after transplantation into the host heart. Nevertheless, because of the lack of direct experimental access to the implanted cells in situ, the changes in electrophysiological characteristics and the mechanisms underlying the pacemaker function of engrafted HCN gene–transfected MSCs in vivo remain unclear.Methods and ResultsOn the basis of the improved preparation of ventricular slices, we successfully performed an in situ investigation of allografted mouse HCN4 gene (mHCN4)-transfected rat MSCs (rMSCs) with the use of patch-clamp recording in ventricular slices. We demonstrate that allografted mHCN4-transfected rMSCs survived in the host heart for >4 weeks; that they expressed If, which is generated by the mHCN4 channel, with a similar amplitude but greater negative activation compared with parallel cells cultured in vitro; that they did not express optical action potentials or depolarization-activated inward sodium or calcium currents; and that they exhibited a low incidence of gap-junctional coupling with host cardiomyocytes.ConclusionsThis study provides direct experimental access to investigate MSCs after transplantation into the host heart. We propose that mHCN4-transfected rMSCs survived in the host heart with altered electrophysiological characteristics of If and were accompanied by a low efficiency of connexin 43 expression at 4 weeks after transplantation, which may affect its pacemaker function in vivo. 相似文献
15.
Soraya Shadmanfar Narges Labibzadeh Mohsen Emadedin Neda Jaroughi Vajiheh Azimian Soura Mardpour Fatemeh Abbasi Kakroodi Tina Bolurieh Seyyedeh Esmat Hosseini Mohammad Chehrazi Maryam Niknejadi Hossein Baharvand Farhad Gharibdoost Nasser Aghdami 《Cytotherapy》2018,20(4):499-506
Background
In this study, we intend to assess the safety and tolerability of intra-articular knee implantation of autologous bone marrow–derived mesenchymal stromal cells (MSCs) in patients with rheumatoid arthritis (RA) and to determine the preliminary clinical efficacy data in this population. The trial registration numbers are as follows: Royan Institute Ethics Committee: AC/91/1133; NCT01873625.Methods
This single-center, randomized, triple-blind, placebo-controlled phase 1/2 clinical trial randomized RA patients with knee involvement to receive either an intra-articular knee implantation of 40 million autologous bone marrow–derived MSCs per joint or normal saline (placebo). Patients were followed up for 12 months to assess therapy outcomes.Results
A total of 30 patients, 15 in the MSC group and 15 in the placebo group, enrolled in this study. There were no adverse effects reported after MSC administration or during follow-up. Patients who received MSCs had superior findings according to the Western Ontario and McMaster Universities Arthritis Index (WOMAC), visual analogue scale (VAS), time to jelling and pain-free walking distance. However, this improvement could not be significantly sustained beyond 12 months. The MSC group exhibited improved standing time (P?=?0.01). In addition, the MSCs appeared to contribute to reductions in methotrexate and prednisolone use.Conclusion
Intra-articular knee implantation of MSCs appeared to be safe and well tolerated. In addition, we observed a trend toward clinical efficacy. These results, in our opinion, have justified the need for further investigations over an extended assessment period with larger numbers of RA patients who have knee involvement. 相似文献16.
17.
ZHILONG MA GUODONG SONG DONGBO ZHAO DALU LIU XIAOLEI LIU YUXIANG DAI ZHIGANG HE DAOHAI QIAN JIAN GONG HONGBO MENG BO ZHOU TINGSONG YANG ZHENSHUN SONG 《Cytotherapy》2019,21(2):162-174
Background and aims
It has been previously verified that mesenchymal stromal cells (MSCs) have a good therapeutic effect on severe acute pancreatitis (SAP) and the potential for regeneration of damaged pancreatic tissue, but the exact molecular mechanism remains unclear. In this study, we demonstrated the therapeutic effect of bone morrow MSCs (BMSCs) on SAP, probably by targeting heme oxygenase-1 (HO-1).Methods
Six hours after SAP induction, either phosphate-buffered saline (PBS) or BMSCs were transfused into the caudal vein of rats, zinc protoporphyrin (ZnPP) was administered intraperitoneally. Pancreatic pathological scoring, serum levels of amylase and inflammatory factors, as well as levels of reactive oxygen species (ROS), malondialdehyde (MDA) and myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) activity in the pancreas were evaluated.Results
Our data showed that BMSCs significantly reduce inflammation and oxidative stress, reduce apoptosis and promote angiogenesis of damaged pancreas. Moreover, BMSCs increased the level of HO-1 in the serum and pancreatic tissue in rats with SAP. In addition, the protective effect of BMSCs was partially neutralized by the HO-1 activity inhibitor ZnPP, suggesting a key role of HO-1 in the therapeutic effect of BMSCs on SAP.Conclusions
BMSCs ameliorated SAP, probably by inducing expression of HO-1, which can exert anti-inflammatory and anti-oxidant effects, reduce apoptosis and promote angiogenesis. 相似文献18.
19.
Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson’s disease 总被引:1,自引:0,他引:1
Mesenchymal stem cells (MSCs) are capable of self-renewing and differentiating into multiple tissues; they are expected to become a source of cells for regenerative therapy. Compared to allogeneic MSCs, autologous MSCs from patients needing cell-based therapy may be an ideal alternative stem cell source. However, characterizations of MSCs from a disease state remains extremely limited. Therefore, we have isolated and characterized MSCs from Parkinson's disease (PD) patients and compared them with MSCs derived from normal adult bone marrow. Our results show that PD-derived MSCs are similar to normal MSCs in phenotype, morphology, and multidifferentiation capacity. Moreover, PD-derived MSCs are capable of differentiating into neurons in a specific medium with up to 30% having the characteristics of dopamine cells. At last, PD-derived MSCs could inhibit T-lymphocyte proliferation induced by mitogens. These findings indicate that MSCs derived from PD patients' bone marrow may be a promising cell type for cellular therapy and somatic gene therapy applications. 相似文献
20.
《Cytotherapy》2020,22(11):606-612
The field of regenerative medicine has expanded greatly in the past decade, with more than 1000 current clinical trials involving mesenchymal stromal cell (MSC) treatment. Multiple recent publications have demonstrated that the beneficial effects from MSCs are not simply due to engraftment into the target organ as classically thought but rather are largely attributable to the release of paracrine factors including cytokines, growth factors and extracellular vesicles (EVs). These EVs contain miRNAs, free fatty acids and proteins that promote regeneration, proliferation and cell function and improve inflammation. Although EVs have shown promising results in animal studies, there are many obstacles to the manufacturing of EVs for clinical applications. This review discusses challenges associated with the manufacturing of clinical-grade EVs in regard to identity, purity, reproducibility, sterility, storage, potency and safety. We discuss currently employed methods and approaches for developing clinical Good Manufacturing Practices (GMP)-grade EVs and the limitations for each. We further discuss the best approaches to overcome the current hurdles in developing clinical GMP-grade EVs. 相似文献