首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the rapidly expanding era of cancer target therapy, regulators of apoptosis are emerging as attractive therapeutic targets. X-linked inhibitor of apoptosis (XIAP) is of specific interest owing to its characteristic overexpression in a wide variety of neoplasms, with a resultant survival advantage for tumor cells and treatment resistance. In this study, we examined three pyrazolo [3,4-d] pyridazine derivatives (PPDs) through molecular modeling and studied their modes of interaction with XIAP-BIR3 domain. PPD-1, which possessed the highest binding affinity with XIAP, was tested on A549 (lung cancer cell line); HCT-116 (colorectal carcinoma cell line); HEPG2 (liver carcinoma cell line), HFB4 (normal human skin melanocyte cell line) and WI-38 (human embryonic lung fibroblasts). In comparison to cisplatin as a positive control, PPD-1 yielded remarkable cytotoxicity on all cancer cell lines, with the highest anti-tumor activity on A549 and a favorable therapeutic ratio. Flow cytometry studies concluded that PPD-1 treatment induces Sub G1 and G2/M cell cycle arrest and apoptosis. The percentage of apoptotic cells in PPD-1 treated A549 cells was considerably higher than that in untreated cells (10.06% vs 0.57%, respectively). To further investigate the mechanism of induction of apoptosis by PPD-1, Real time-PCR was used to quantify the expression levels of key apoptotic regulators. Significant overexpression of the effector capsase-3, pro-apoptotic bax and tumor suppressor gene p53 were noted as compared to untreated cells (7.19 folds, 7.28 folds, and 5.08 folds, respectively). Moreover, PPD-1 inhibited the expression of the anti-apoptotic bcl-2 gene to 0.22 folds. These findings demonstrate that PPD-1 treatment disrupts the Bcl-2/BAX balance in lung cancer cell lines, leading to apoptosis induction possibly through intrinsic mitochondria-dependent pathway. These novel insights elucidate the mechanism of PPD-1 cytotoxicity in lung cancer cell lines and offer a promising therapeutic approach that needs further study.  相似文献   

2.
Retinoids play an important role in the regulation of cell growth and death. Synthetic retinoid CD437 reportedly induces apoptosis in various cancer cell lines. However, the mechanism of inducing apoptosis in hepatocellular carcinoma (HCC) cells by this agent remains to be clarified. In this study, we investigated the signaling pathway by which CD437 induces apoptosis in HCC cell lines. Apoptosis of six human HCC cell lines was induced by treatment with CD437. Caspase-3 and -9 were activated by CD437, suggesting that the apoptosis is mediated by mitochondrial pathways. Consistent with these findings, the treatment with CD437 upregulated Bax protein, downregulated Bcl-2 protein and released cytochrome c into the cytoplasm. Moreover, rhodamine123 staining revealed mitochondrial depolarization in the cells treated with CD437. These data of the present study suggest that CD437 induces apoptosis in HCC cells via mitochondrial pathways.  相似文献   

3.
We found that the deoxypodophyllotoxin derivative, 2,6-dimethoxy-4-(6-oxo-(5R,5aR,6,8,8aR,9-hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)phenyl ((R)-1-amino-4-(methylthio)-1-oxobutan-2-yl)carbamate (DPMA), exhibited superior cytotoxicity compared with etoposide. In this study, we investigated the mechanism of action of DPMA. DPMA exhibited anti-proliferative activity and induced apoptosis in A549 cells in a dose- and time-dependant manner. DPMA inhibited microtubule formation and induced expression of Bax, cleaved caspase-3, p53 and ROS, and inhibited Bcl-2 expression. DPMA also affected cyclinB1, cdc2 and p-cdc2 expression, inducing cell cycle arrest. DPMA also inhibited tube formation of VEGF-induced human umbilical vein endothelial cells. These studies demonstrate that DPMA inhibits p53/cdc2/Bax signaling, thereby inhibiting cell growth/angiogenesis and inducing apoptosis.  相似文献   

4.
The current study was designed to evaluate the in vitro antiproliferative activity of 1,8-dihydroxy-4-methylanthracene-9,10-dione (DHMA) isolated from the Luffa acutangula against human non-small cell lung cancer cell line (NCI-H460). Induction of apoptosis and reactive oxygen species (ROS) generation was determined through fluorescence microscopic technique. Quantitative real-time PCR and western blotting analysis was carried out to detect the expression of pro-apoptotic (p53, p21, caspase-3, Bax, GADD45A, and ATM) and anti-apoptotic (NF-κB) proteins in NCI-H460 cell line. In silico studies also performed to predict the binding mechanism of DHMA with MDM2-p53 protein. The DHMA inhibited the cell viability of NCI-H460 cells in a dose-dependent manner with an IC50 of about 50?µg/ml. It significantly reduced cell viability correlated with induction of apoptosis, which was associated with ROS generation. The apoptotic cell death was further confirmed through dual staining and DNA fragmentation assay. DHMA significantly increased the expression of anti-apoptotic protein such as p53, p21, Bax, and caspase-3 but downregulated the expression of NF-κB in NCI-H460 cell line. In silico studies demonstrate that DHMA formed hydrogen bond interaction with key residues Trp26, Phe55 and Lys24 by which it disrupt the binding of p53 with MDM2 receptor. These findings suggested that DHMA induces apoptosis in NCI-H460 via a p53-dependent pathway. This the first study on cytotoxic and apoptosis inducing activity of DHMA from L. acutangula against NCI-H460 cell line. Therefore, DHMA has therapeutic potential for lung cancer treatment.  相似文献   

5.
The molecular events associated with apoptosis induced by two distinct triggers (1) serum withdrawal and (2) etoposide treatment were investigated in the human lung carcinoma cell line A549. Although both serum withdrawal and etoposide treatment resulted in internucleosomal DNA fragmentation, the morphologic features were distinct. Serum deprived apoptotic cells appeared small, round and refractile, with little evidence of nuclear fragmentation; etoposide-induced apoptotic cells appeared enlarged and flattened and displayed prominent nuclear fragmentation. p53 and p21/waf1 protein levels were elevated in etoposide-treated cells, but not in cells subjected to serum with-drawal. Apoptosis induced by both treatments was accompanied by a significant reduction in Rb protein levels. However, etoposide treatment led to hypo-phosphorylation of Rb, while serum withdrawal did not alter the Rb phosphorylation pattern. Serum withdrawal-induced apoptosis was correlated with activation of JNK and suppression of ERK activities, while both JNK and ERK activities were slightly elevated during etoposid- induced apoptosis. Together, these results support the hypothesis that apoptosis induced by serum withdrawal and etoposide treatment occurs through different pathways and involves distinct mediators.  相似文献   

6.
Activated phagocytes employ myeloperoxidase to generate glycolaldehyde, 2-hydroxypropanal, and acrolein. Because alpha-hydroxy and alpha,beta-unsaturated aldehydes are highly reactive, phagocyte-mediated formation of these products may play a role in killing bacteria and tumor cells. Using breast cancer cells, we demonstrate that glycolaldehyde inactivates glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and Cu,Zn superoxide dismutase, suppresses cell growth, and induces apoptosis. These results suggest that glycolaldehyde might be an important mediator of neutrophil anti-tumor activity.  相似文献   

7.
Bioactivity-guided study led to the isolation of a natural phenylpropionate derivative, (E)-3-(4-hydroxy-2-methoxyphenyl)-propenoic acid 4-hydroxy-3-methoxyphenyl ester from the roots of Mirabilis himalaica. Cellular analysis showed that compound 1 specifically inhibited the cancer cell growth through the S phase arrest. Mechanistically, compound 1 was able to induce the apoptosis in HepG2 cells through mitochondrial apoptosis pathway in which Bcl-2 and p53 were required. Interestingly, the cellular phenotype of compound 1 were shown specifically in cancer cells originated from hepatocellular carcinoma (HepG2) while compromised influence by compound 1 were detected within the normal human liver cells (L-02). Consistently, the in vivo inhibitory effects of compound 1 on tumor growth were validated by the in xenograft administrated with HepG2 cells. Our results provided a novel compound which might serve as a promising candidate and shed light on the therapy of the hepatocellular carcinoma.  相似文献   

8.
Mimosine induces apoptosis in the HL60 human tumor cell line   总被引:1,自引:1,他引:0  
Mimosine, a plant amino acid not found in proteins, has been widely used as a synchronizing agent, blocking the progression of cell cycle on the G1/S phase border. The mechanism by which this block is achieved is still unclear. We report that in HL60 cells the synchronization is related to an increase in apoptosis. Another human tumor cell line, K562, is insensitive to both phenomena thereby demonstrating that apoptosis observed in HL60 is line-specific. We hypothesize that the mimosine-induced apoptosis and alteration of the cell cycle is due to the inhibition of hypusine generation.  相似文献   

9.
The photokilling activity of 5-(4-trimethylammoniumphenyl)-10,15,20-tris(2,4,6-trimethoxyphenyl)porphyrin (CP) was evaluated on a Hep-2 human larynx-carcinoma cell line. Cell treatment was carried out with 5 μM CP incorporated into liposomal vesicles. Under violet-blue exciting light, the red fluorescence of CP was mainly detected as a filamentous pattern characteristic of mitochondrial localization. Similar pattern was also observed using rhodamine 123 in Hep-2 cells. No dark cytotoxicity was observed using 5 μM CP concentration and long incubation time (24 h). Using Hoechst-33258 and caspase-3 immunostaining methods, cell cultures treated for 24 h with CP and exposed to light for 7.5 min (27 J/cm2) showed a great amount of apoptotic cells (40%). In contrast, necrotic cells (58%) were observed using the same drug concentration but irradiated for 15 min (54 J/cm2). The results show that CP can induce different mechanisms of cell death depending on irradiation doses in the photodynamic treatments, which makes this agent an interesting sensitizer with potential application in photodynamic tumor therapy.  相似文献   

10.
11.
An efficient, one-pot multicomponent reaction of novel pyrazolo-oxothiazolidine derivatives was achieved by condensation of 1-(benzofuran-2-yl)-3-(substituted-arylprop-2-en-1-ones, thiosemicarbazide and dialkyl acetylenedicarboxylates under the optimized reaction conditions. Synthesised compounds were evaluated for their antiproliferative activity against A549 human lung cancer cell line. Among all the tested compounds, 4a (IC50 – 0.930?μg/mL), 4e (IC50 – 1.207?μg/mL), 4f (IC50 – 0.808?μg/mL), 4g (IC50 – 1.078?μg/mL), 4h (IC50 – 0.967?μg/mL) and 4j (IC50 – 2.445?μg/mL) showed promising activity compared with standard drug Sorafenib (IC50 – 3.779?μg/mL). Molecular docking studies indicated that compound 4f had the greatest affinity for catalytic site of receptors EGFR (PDB ID code: 1?M17) and VEGFR2 (PDB ID code: 4AGD, 4ASD). These novel pyrazolo-oxothiazolidine derivatives can be promising therapeutic agents for A549 human lung cancer cell line.  相似文献   

12.
Herein we report the synthesis of two series of 4-phenylphthalazin-1-ones 11a-i and 4- benzylphthalazin-1-ones 16a-h as anti-lung adenocarcinoma agents with potential inhibitory activity against PARP-1. All the newly synthesized phthalazinones were evaluated for their anti-proliferative activity against A549 lung carcinoma cell line. Phthalazinones 11c-i and 16b, c showed significant cytotoxic activity against A549 cells at different concentrations (0.1, 1 and 10 μM) for two time intervals (24 h and 48 h). These nine phthalazinones were further examined for their inhibitory activity towards PARP-1. Compound 11c emerged as the most potent PARP-1 inhibitor with IC50 value of 97 nM, compared to that of Olaparib (IC50 = 139 nM). Furthermore, all these nine phthalazinones passed the filters of Lipinski and Veber rules, and predicted to have good pharmacokinetics properties in a theoretical kinetic study. On the other hand, western blotting in A549 cells revealed the enhanced expression of the cleaved PARP-1, alongside, with the reduced expression of pro-caspase-3 and phosphorylated AKT. In addition, ELISA assay confirmed the up-regulation of active caspase-3 and caspase-9 levels compared to the control, suggesting the activation of the apoptotic machinery in the A549 cells. Finally, molecular docking of 11c into PARP-1 active site (PDB: 5WRZ) was performed to explore the probable binding mode.  相似文献   

13.
Human TFPI-2 is an extracellular matrix-associated Kunitz-type serine proteinase inhibitor. We previously demonstrated that a human fibrosarcoma cell line, HT-1080, does not express TFPI-2, but genetic restoration of TFPI-2 expression in these cells markedly inhibited their growth and metastasis in vivo. In the present study, either full-length recombinant TFPI-2, or its mutated first Kunitz-type domain (R24K KD1), were offered to HT-1080 cells, and the degree of apoptosis assessed by nuclear fragmentation, ethidium bromide and acridine orange staining, fluorescence activated cell sorting, immunoblotting and gene expression profiling. R24K KD1 induced apoptosis in 69% of HT-1080 cells in a 48 h period compared to 39% for TFPI-2, while a KD1 preparation lacking a reactive site arginine/lysine residue (R24Q KD1) produced only an 18% apoptosis rate, suggesting that the observed apoptosis was related to proteinase inhibition. Immunoblotting experiments indicated increased caspase 3 and 9 activation, up-regulation of pro-apoptotic Bax and suppression of anti-apoptotic Bcl-2 protein. Finally, microarray analyses of R24K KD1-treated cells indicated elevated expression of several pro-apoptotic genes and under-expression of anti-apoptotic genes. Collectively, our results demonstrate that treatment of HT-1080 cells exogenously with either TFPI-2 or R24K KD1 activates caspase-mediated, pro-apoptotic signaling pathways resulting in apoptosis.  相似文献   

14.
Vanadium mediated apoptosis and cell cycle arrest in MCF7 cell line   总被引:4,自引:0,他引:4  
Vanadium is a metal widely distributed in the environment. It is also a dietary micronutrient. It has shown insulin mimetic and chemopreventive properties and has been considered as an important pharmacological agent. In this study, we evaluated the apoptogenic role of vanadium on human breast cancer cell line MCF7. Exposure of MCF7 cells to vanadium led to the induction of apoptosis in a dose-dependent manner. Percentage of apoptosis was maximum (42.5%) at the highest non-toxic dose (250 microM). It was found that vanadium treatment brought about a prominent chromatin condensation, cell cycle arrest leading to apoptosis. These apoptosis based assays demonstrate that vanadium has the potential to be developed into an anti-cancer drug in the near future.  相似文献   

15.
A library of new imidazopyridine linked triazole hybrid conjugates (8a-r) were designed, synthesized and evaluated for their cytotoxicity against four cancer cell lines namely, human lung (A549), human prostate (DU-145), human colon (HCT-116) and breast (MDA-MB 231) cancer. These conjugates exhibited good to moderate activity against the tested human cancer cell lines. Two of the conjugates (8g and 8j) showed significant antitumor activity against human lung cancer cell line (A549) with IC50 values of 0.51 µM and 0.63 µM respectively. Flow cytometry analysis revealed that these conjugates arrested the cell cycle at G2/M phase in human lung cancer cell line (A549). Immune-histochemistry and tubulin polymerization assay suggest inhibition of tubulin. Hoechst staining, annexin V and DNA fragmentation by tunnel assay suggested that these compounds induce cell death by apoptosis. Overall, the current study demonstrates that the synthesis of imidazopyridine linked triazole conjugates as promising anticancer agents causing G2/M arrest and apoptotic-inducing ability.  相似文献   

16.
Iron is essential for maintaining cellular metabolism of most organisms. Iron chelators such as desferrioxamine have been used clinically in the treatment of iron overload diseases. In the present study, we used human colon adenocarcinoma cells as a proliferating cell model to validate that desferrioxamine inhibits cell proliferation and induces apoptosis. Proteomic analysis revealed that proteins involved in cell proliferation, signal transduction, metabolism and protein synthesis were significantly regulated by the availability of iron, rendering a close correlation between cell apoptosis and the disturbance of mitochondrial, signaling and metabolic pathways. These results provide new insights into the mechanisms of cell proliferation inhibition attributed to iron depletion.  相似文献   

17.
Functional and morphological modifications in the IPLB-LdFB insect cell line were examined following a short treatment with a reversible inhibitor of mitochondrial ATP synthase, oligomycin A, and subsequent incubation for various times in oligomycin-A-free medium. Oncosis, apoptosis and autophagy at variable percentages were observed under the various experimental conditions. Together with oncotic and apoptotic pathways that lead directly to cell death, the insect cells responded to ATP depletion with autophagy. Our results revealed that, in most cases, autophagy failed to restore cellular homeostasis, probably because of a massive sequestration of mitochondria in autophagic vacuoles. This critical event was a “point of no return” and ultimately resulted in cell necrosis. However, cells with a misshapen body and nucleus resembling “resistant forms” were observed at the end of the experiments. Our findings indicate that oligomycin-A-induced autophagy can promote cell protection or cell destruction and is an open-ended process that can lead to survival or death depending on a combination of concomitant factors.This work was supported by MIUR (Italy) grants to M.deE. and E.O. and by the Centro Grandi Attrezzature (University of Insubria, Varese, Italy).Gianluca Tettamanti and Davide Malagoli contributed equally to this work.  相似文献   

18.
Anti-idiotype monoclonal antibody (mAb) 1E10 was generated by immunizing BALB/c mice with an Ab1 mAb which recognizes NeuGc-containing gangliosides, sulfatides and some tumor antigens. 1E10 mAb induces therapeutic effects in a primary breast carcinoma and a melanoma model. However, the tumor immunity mechanisms have not been elucidated. Here we show that aluminum hydroxide-precipitated 1E10 mAb immunization induced anti-metastatic effect in the 3LL-D122 Lewis Lung carcinoma, a poorly immunogenic and highly metastatic model in C57BL/6 mice. The therapeutic effect was associated to the increment of T cells infiltrating metastases, the reduction of new blood vessels formation and the increase of apoptotic tumor cells in lung nodules. Interestingly, active immunization does not induce measurable antibodies to the 1E10 mAb, the NeuGc-GM3 or tumor cells, which may suggest a different mechanism which has to be elucidated. These findings may support the relevance of this target for cancer biotherapy.  相似文献   

19.
A mutant Aspergillus carbonarius selected for temperature tolerance after UV treatment, when grown in shake flasks, produced mycelia bearing yellow pigment. Since the mutant was affected in sterol biosynthetic pathway, the pigment was apparently produced to maintain membrane fluidity and rigidity for growth sustenance in low-pH culture broth. Nuclear magnetic resonance analyses characterizing the pigment as a partially saturated canthaxanthin, containing beta-ionone end rings, suggested its application as a retinoid. When tested for this property in retinoic acid receptor expressing prostate cancer cell line, LNCaP, the fungal partially saturated canthaxanthin induced apoptosis. Low apoptosis percentage in DU145 prostrate cancer cells that does not express functional retinoic acid receptor-beta (RAR-beta) suggested binding specificity of the partially saturated canthaxanthin for RAR-beta.  相似文献   

20.
In comparison with four tumor cell lines and three non transformed cell types, chronic myeloid leukemia K562 cells were selectively sensitive to proliferation inhibition by the oxoindole derivative XJW20, as determined by the MTT assay. Further investigation revealed that XJW20 selectively induced G2/M arrest and apoptosis in K562 cells. At the molecular level, XJW20-induced G2/M arrest was accompanied by up-regulation of cyclin B1 and phospho (p)-Cdc25C (Ser216) and down-regulation of CDK1. There is no change in the expression of CDK2. The increased apoptotic activity by XJW20 was characterized by an increase in reactive oxygen species (ROS) generation, the mitochondrial transmembrane potential (ΔΨm) dissipation, cytochrome C releasing, apoptotic nuclei (AO/EB double staining) and nuclei condensation (DAPI-staining). The down-regulation of phosphorylated ERK was also found in XJW20-treated K562 cells. These molecular events induced by XJW20 may provide insight into the mechanism of action that led to growth arrest and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号