首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood-brain barrier (BBB) is a major obstacle to drug delivery into the central nervous system (CNS), in particular for macromolecules such as peptides and proteins. However, certain macromolecules can reach the CNS via a receptor-mediated transcytosis (RMT) pathway, and low-density lipoprotein receptor-related protein 1 (LRP1) is one of the promising receptors for RMT. An LRP1 ligand peptide, Angiopep-2, was reported to pass through the BBB and deliver covalently conjugated drugs into the CNS. While conjugation of LRP1 ligands with drugs would be an effective approach for drug delivery to the CNS, no other reliable LRP1 ligands have been reported to date. In this study, we aimed to identify novel LRP1 ligands to further investigate LRP1-mediated RMT. Using phage display technology, we obtained a novel peptide, L57 (TWPKHFDKHTFYSILKLGKH-OH), with an EC50 value of 45 nM for binding to cluster 4 (Ser3332–Asp3779) of LRP1. L57 was stable in mouse plasma for up to 20 min. In situ brain perfusion assay in mice revealed the significantly high BBB permeability of L57. In conclusion, we discovered L57, the first artificial LRP1-binding peptide with BBB permeability. Our findings will contribute to the development of RMT-based drugs for the treatment of CNS diseases.  相似文献   

2.
An endothelial cell monolayer separates interstitia from blood and lymph, and determines the bidirectional transfer of solutes and macromolecules across these biological spaces. We review advances in transport modalities across these endothelial barriers. Glucose is a major fuel for the brain and peripheral tissues, and insulin acts on both central and peripheral tissues to promote whole‐body metabolic signalling and anabolic activity. Blood‐brain barrier endothelial cells display stringent tight junctions and lack pinocytic activity. Delivery of blood glucose and insulin to the brain occurs through their respective carrier (Glucose transporter 1) and receptor (insulin receptor), enacting bona fide transcytosis. At supraphysiological concentrations, insulin is also likely transferred by fluid phase cellular uptake and paracellular transport, especially in peripheral microvascular endothelia. The lymphatic microvasculature also transports insulin but in this case from tissues to lymph and therefrom to blood. This serves to end the hormone's action and to absorb highly concentrated subcutaneously injected insulin in diabetic individuals. The former function may involve receptor‐mediated transcytosis into lymphatic endothelial cells, the latter fluid phase uptake and paracellular transport. Lymphatic capillaries also mediate carrier‐dependent transport of other nutrients and macromolecules. These findings challenge the notion that lymphatic capillaries only transport macromolecules through intercellular flaps.  相似文献   

3.
为构建特异性的脑药物转运载体 ,分段合成了抗大鼠转铁蛋白受体的单链抗体基因 (Ox2 6 scfv) .经重叠PCR拼接成完整片段 ,克隆入pUC19载体中 ,测序正确后克隆到大肠杆菌表达载体pET 15b E .tag上 .IPTG诱导 ,表达产物分子量为 2 9kD ,约占菌体总蛋白量的 4 0 % .包涵体经 6mol L盐酸胍变性后 ,过SephacrylS 30 0HR分子筛柱复性蛋白 .免疫酶染色实验表明 ,该单链抗体能与转铁蛋白受体特异性结合 ,为建立以转铁蛋白受体为介导的血脑屏障转运载体打下了基础  相似文献   

4.
Most lysosomal enzymes require mannose 6‐phosphate (M6P) residues for efficient receptor‐mediated lysosomal targeting. Although the lack of M6P residues results in missorting and hypersecretion, selected lysosomal enzymes reach normal levels in lysosomes of various cell types, suggesting the existence of M6P‐independent transport routes. Here, we quantify the lysosomal proteome in M6P‐deficient mouse fibroblasts (PTki) using Stable Isotope Labeling by Amino acids in Cell culture (SILAC)‐based comparative mass spectrometry, and find unchanged amounts of 20% of lysosomal enzymes, including cathepsins D and B (Ctsd and Ctsb). Examination of fibroblasts from a new mouse line lacking both M6P and sortilin, a candidate for M6P‐independent transport of lysosomal enzymes, revealed that sortilin does not act as cargo receptor for Ctsb and Ctsd. Using fibroblast lines deficient for endocytic lipoprotein receptors, we could demonstrate that both LDL receptor and Lrp1 mediate the internalization of non‐phosphorylated Ctsb and Ctsd. Furthermore, the presence of Lrp1 inhibitor increased the secretion of Ctsd from PTki cells. These findings establish Lrp1 and LDL receptors in M6P‐independent secretion‐recapture targeting mechanism for lysosomal enzymes.   相似文献   

5.
The lysosphingolipid sphingosine 1-phosphate (S1P) is a component of HDL. Findings from a growing number of studies indicate that S1P is a mediator of many of the cardiovascular effects of HDL, including the ability to promote vasodilation, vasoconstriction, and angiogenesis, protect against ischemia/reperfusion injury, and inhibit/reverse atherosclerosis. These latter cardioprotective effects are being shown to involve the S1P-mediated suppression of inflammatory processes, including reduction of the endothelial expression of monocyte and lymphocyte adhesion molecules, decreased recruitment of polymorphonuclear cells to sites of infarction, and blocking of cardiomyocyte apoptosis after myocardial infarction. This review article summarizes the evidence that S1P as a component of HDL serves to regulate vascular cell and lymphocyte behaviors associated with cardiovascular (patho)physiology.  相似文献   

6.
Amyloid precursor protein (APP) and its secreted form, sAPP, contribute to the development of neurons in hippocampus, a brain region critical for learning and memory. Full‐length APP binds the low‐density lipoprotein receptor‐related protein (LRP), which stimulates APP endocytosis. LRP also contributes to neurite growth. Furthermore, the receptor associated protein (RAP) binds LRP in a manner that blocks APP–LRP interactions. To elucidate APP contributions to neurite growth for full‐length APP and sAPP, we cultured wild type (WT) and APP knockout (KO) neurons in sAPPα and/or RAP and measured neurite outgrowth at 1 day in vitro. Our data reveal that WT neurons had less axonal outgrowth including less axon branching. RAP treatment potentiated the inhibitory effects of APP. KO neurons had significantly more outgrowth and branching, especially in response to RAP, effects which were also associated with ERK2 activation. Our results affirm a major inhibitory role by full‐length APP on all aspects of axonal and dendritic outgrowth, and show that RAP–LRP binding stimulated axon growth independently of APP. These findings support a major role for APP as an inhibitor of neurite growth and reveal novel signaling functions for LRP that may be disrupted by Alzheimer's pathology or therapies aimed at APP processing.  相似文献   

7.
Amyloid-β peptide (Aβ) concentration in CSF is potentially a diagnostic and therapeutic target for Alzheimer's disease (AD). The purpose of this study was to clarify the elimination mechanism of human Aβ(1-40) [hAβ (1-40)] from CSF. After intracerebroventricular (ICV) administration, [(125) I]hAβ(1-40) was eliminated from the rat CSF with a half-life of 17.3 min. The elimination of [(125) I]hAβ(1-40) was significantly inhibited by human receptor-associated protein (RAP) and the elimination was attenuated in either anti-low-density lipoprotein receptor-related protein (LRP)1 antibody-treated or RAP-deficient mice, suggesting that a member(s) of the low-density lipoprotein receptor gene family is involved in the elimination of hAβ(1-40) from CSF. The amounts of LRP1 and LRP2 proteins were determined by means of liquid chromatography-tandem mass spectrometry, and the LRP1 content in rat choroid plexus was determined to be 3.7 fmol/μg protein, whereas the LRP2 content was below the detection limit (<0.2 fmol/μg protein). Conditionally, immortalized rat choroid plexus epithelial cells exhibited predominant apical-to-basal and apical-to-cell transport of [(125) I]hAβ(1-40). These results indicated that hAβ(1-40) is actively eliminated from CSF and this process is at least partly mediated by LRP1 expressed at choroid plexus epithelial cells, which therefore play a role in determining CSF concentrations of hAβ(1-40).  相似文献   

8.
9.
To obtain a panel of monoclonal antibodies (MAbs) to study the folding and conformation of the low density lipoprotein receptor (LDLr), we have generated hybridomas from LDLr-deficient mice that had been immunized with the extracellular domain of the human LDLr. The 12 MAbs were specific for the ligand binding domain of the LDLr, with individual MAbs recognizing epitopes in ligand binding repeats 1, 2, 3, 5, and 7. A subset of the MAbs failed to react with the LDLr when disulfide bonds were reduced, and one MAb, specific for an epitope that spans ligand binding repeats 1 and 2, recognized two conformational forms of the LDLr with different affinities. Antibodies specific for ligand binding repeats 3, 5, and 7 completely blocked the binding of LDL particles to the LDLr on cultured human fibroblasts, whereas MAbs with epitopes in ligand binding repeats 1 and 2 partially blocked the binding of LDL to the LDLr. These anti-LDLr MAbs will serve as useful probes for further analysis of LDLr conformation and LDLr-mediated lipoprotein binding.  相似文献   

10.
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional receptor that undergoes constitutive endocytosis and recycling. To identify LRP-1 in lipid rafts, we biotin-labeled cells using a membrane-impermeable reagent and prepared Triton X-100 fractions. Raft-associated proteins were identified in streptavidin affinity-precipitates of the Triton X-100-insoluble fraction. PDGF beta-receptor was identified exclusively in lipid rafts, whereas transferrin receptor was excluded. LRP-1 distributed partially into rafts in murine embryonic fibroblasts (MEFs) and HT 1080 cells, but not in smooth muscle cells and CHO cells. LRP-1 partitioning into rafts was not altered by ligands, including alpha2-macroglobulin, platelet-derived growth factor-BB, and receptor-associated protein (RAP). To examine LRP-1 trafficking between membrane microdomains, we developed a novel method based on biotinylation and detergent fractionation. Association of LRP-1 with rafts was transient; by 15 min, nearly all of the LRP-1 that was initially raft-associated exited this compartment. LRP-1 in the Triton X-100-soluble fraction, which excludes lipid rafts, demonstrated complex kinetics, with phases reflecting import from rafts, endocytosis, and recycling. Potassium depletion blocked LRP-1 endocytosis but did not inhibit trafficking of LRP-1 from rafts into detergent-soluble microdomains. Our data support a model in which LRP-1 transiently associates with rafts but does not form a stable pool. Fluid movement of LRP-1 between microdomains may facilitate its function in promoting the endocytosis of other plasma membrane proteins, such as the urokinase receptor, which localizes in lipid rafts.  相似文献   

11.
The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.  相似文献   

12.
13.
A combinatorial peptide library contains an enormous combination of amino acid sequences and drug candidates, but an effective screening strategy to identify a variety of bioactive peptides has yet to be established. In this article, a random hexapeptide library was screened to identify novel peptide ligands for a 5-oxo-ETE receptor (OXER), which is a G-protein-coupled receptor for bioactive lipids, by using an OXER-Gi1alpha fusion protein. We successfully identified 2 hexapeptides-Ac-HMQLYF-NH2 and Ac-HMWLYF-NH(2)-that exhibited agonistic activity. Although the corresponding affinities were relatively low (EC50 values of 146 and 6.7 microM, respectively), the activities were confirmed by other independent cell-based assay methods, namely, intracellular calcium mobilization and cell chemotaxis. This study demonstrates that a combinatorial peptide library may be screened using a [35S]GTPgammaS binding assay with G-protein-coupled receptor (GPCR)-Galpha fusion proteins, in general, and that of peptide ligands can be obtained even for nonpeptide receptors.  相似文献   

14.
The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.  相似文献   

15.
Peptides are destined to play a major role as therapeutic agents. My laboratory is contributing to speeding up this process. On the one hand, we devote efforts to studying the molecular details and dynamics of the events that occur during molecular recognition at protein surfaces. We succeeded to design and synthesize peptides able to modulate these recognition events either permanently or in response to light. On the other hand, we are discovering and designing peptides able to cross biological barriers. Our aim is to use these peptides as shuttles for targeting therapeutic agents to organs, tissues, or cells, with a special emphasis on drug delivery to the brain. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
In eukaryotic cells, clathrin‐mediated endocytosis (CME) is a central pathway for the internalization of proteins from the cell surface, thereby contributing to the maintenance of the plasma membrane protein composition. A key component for the formation of endocytic clathrin‐coated vesicles (CCVs) is AP‐2, as it sequesters cargo membrane proteins, recruits a multitude of other endocytic factors and initiates clathrin polymerization. Here, we inhibited CME by depletion of AP‐2 and explored the consequences for the plasma membrane proteome. Quantitative analysis revealed accumulation of major constituents of the endosomal‐lysosomal system reflecting a block in retrieval by compensatory CME. The noticeable enrichment of integrins and blockage of their turnover resulted in severely impaired cell migration. Rare proteins such as the anti‐cancer drug target CA9 and tumor markers (CD73, CD164, CD302) were significantly enriched. The AP‐2 knockdown attenuated the global endocytic capacity, but clathrin‐independent entry pathways were still operating, as indicated by persistent internalization of specific membrane‐spanning and GPI‐anchored receptors (PVR, IGF1R, CD55, TNAP). We hypothesize that blocking AP‐2 function and thus inhibiting CME may be a novel approach to identify new druggable targets, or to increase their residence time at the plasma membrane, thereby increasing the probability for efficient therapeutic intervention.  相似文献   

17.
Mucopolysaccharidosis Type I, Hurler's Syndrome, is a lysosomal storage disorder that affects the brain. The missing enzyme, alpha-L-iduronidase (IDUA), does not cross the blood-brain barrier (BBB). To enable BBB transport of the enzyme, human IDUA was fused to the carboxyl terminus of the heavy chain of a chimeric monoclonal antibody (MAb) to the human insulin receptor (HIR). The HIRMAb crosses the BBB on the endogenous insulin receptor, and acts as a molecular Trojan horse to ferry into brain the IDUA. Transfection of COS cells resulted in high levels of IDUA enzyme activity both in the medium and in the intracellular space. The size of the fusion heavy chain, as measured with Western blotting and antibodies to either human IDUA or human IgG, was increased about 80 kDa, relative to the size of the heavy chain of the parent HIRMAb. The IDUA enzyme specific activity of the affinity purified HIRMAb-IDUA fusion protein was 363 +/- 37 U/microg protein, which is comparable to specific activity of recombinant IDUA. The accumulation of glycosoaminoglycans in Hurler fibroblasts was decreased 70% by treatment with the HIRMAb-IDUA fusion protein. Confocal microscopy showed targeting of the fusion protein to the lysosome. The HIRMAb-IDUA fusion protein bound with high affinity to the HIR, and was rapidly transported into the brain of the adult Rhesus monkey following intravenous administration. The HIRMAb-IDUA fusion protein is a new treatment for Hurler's syndrome, which has been specifically engineered to cross the human BBB.  相似文献   

18.
19.
Neurotrophins, such as brain derived neurotrophic factor (BDNF), do not cross the blood-brain barrier (BBB). Certain monoclonal antibodies (MAb) to the human insulin receptor (HIR) do cross the BBB via receptor-mediated transport, and can act as a molecular Trojan horse to ferry across the BBB an attached drug. A genetically engineered fusion protein was produced whereby the amino terminus of human BDNF is fused to the carboxyl terminus of the heavy chain of a chimeric HIRMAb. The HIRMAb-BDNF fusion protein reacted equally with antibodies to human IgG and BDNF. The bi-functionality of the fusion protein was retained as the affinity of the fusion protein for the HIR was identical to that of the chimeric HIRMAb, and the affinity of the fusion protein for the trkB receptor was identical to that of BDNF. The fusion protein was equi-potent with BDNF in a neuroprotection assay in human neural cells. The pharmacokinetics (PK) of the fusion protein was examined in the adult Rhesus monkey. The mean residence time (MRT) of the fusion protein in blood was >100-fold longer than the MRT of BDNF. Therapeutic levels of BDNF were produced in primate brain following the intravenous administration of the fusion protein. A fusion protein tandem vector was engineered that allowed for isolation of a CHO cell line that produced the fusion protein at high levels in serum free medium. Neurotrophins, such as BDNF, can be re-formulated to enable these molecules to cross the human BBB, and such fusion proteins represent a new class of human neurotherapeutics.  相似文献   

20.
The concentration of low-density lipoprotein (LDL) cholesterol (C) in plasma is a key determinant of cardiovascular disease risk and human genetic studies have long endeavoured to elucidate the pathways that regulate LDL metabolism. Massive genome-wide association studies (GWASs) of common genetic variation associated with LDL-C in the population have implicated SORT1 in LDL metabolism. Using experimental paradigms and standards appropriate for understanding the mechanisms by which common variants alter phenotypic expression, three recent publications have presented divergent and even contradictory findings. Interestingly, although these reports each linked SORT1 to LDL metabolism, they did not agree on a mechanism to explain the association. Here, we review recent mechanistic studies of SORT1 - the first gene identified by GWAS as a determinant of plasma LDL-C to be evaluated mechanistically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号