首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impacts of ultraviolet‐B radiation (UVB) on polar sea‐ice algal communities have not yet been demonstrated. We assess the impacts of UV on these communities using both laboratory experiments on algal isolates and by modification of the in situ spectral distribution of the under‐ice irradiance. In the latter experiment, filters were attached to the upper surface of the ice so that the algae were exposed in situ to treatments of ambient levels of PAR and UV radiation, ambient radiation minus UVB, and ambient radiation minus all UV. After 16 d, significant increases in chl a and cell numbers were recorded for all treatments, but there were no significant differences among the different treatments. Bottom‐ice algae exposed in vitro were considerably less tolerant to UVB than those in situ, but this tolerance improved when algae were retained within a solid block of ice. In addition, algae extracted from brine channels in the upper meter of sea ice and exposed to PAR and UVB in the laboratory were much more tolerant of high UVB doses than were any bottom‐ice isolates. This finding indicates that brine algae may be better adapted to high PAR and UVB than are bottom‐ice algae. The data indicate that the impact of increased levels of UVB resulting from springtime ozone depletion on Antarctic bottom‐ice communities is likely to be minimal. These algae are likely protected by strong UVB attenuation by the overlying ice and snow, by other inorganic and organic substances in the ice matrix, and by algal cells closer to the surface.  相似文献   

2.
To assess the effects of UV radiation and its interaction with water availability on Mediterranean plants, we performed an experiment with seedlings of six Mediterranean species (three mesophytes vs three xerophytes) grown in a glasshouse from May to October under three UV conditions (without UV, with UVA and with UVA+UVB) and two irrigation levels (watered to saturation and low watered). Morphological, physiological and biochemical measures were taken. Exposure to UVA+UVB increased the overall leaf mass per area (LMA) and the leaf carotenoids/chlorophyll a + b ratio of plants in relation to plants grown without UV or with UVA, respectively. In contrast, we did not find a general effect of UV on the leaf content of phenols or UVB‐absorbing compounds of the studied species. Regarding plant growth, UV inhibited the above‐ground biomass production of well‐watered plants of Pistacia lentiscus. Conversely, under low irrigation, UVA tended to abolish the reduction in growth experienced by P. lentiscus plants growing in a UV‐free environment, in accordance with UVA‐enhanced apparent electron transport rate (ETR) values under drought in this species. UVA also induced an overall increase in root biomass when plants of the studied species were grown under a low water supply. In conclusion, while plant exposition to UVA favored root growth under water shortage, UVB addition only gave rise to photoprotective responses, such as the increase in LMA or in the leaf carotenoids/chlorophyll a + b ratio of plants. Species‐specific responses to UV were not related with the xerophytic or mesophytic character of the studied species.  相似文献   

3.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

4.
A mat-forming cyanobacterium (Phormidium mur-rayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiances. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/ chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity.  相似文献   

5.
The effects of ultraviolet (UV) radiation on the photosynthetic and UV‐screening pigments in needles of Scots pine (Pinus sylvestris L.) saplings were studied in a UV‐exclusion field chamber experiment in northern Finland (67°N) during 2001–2002. The chambers held filters that excluded both UVB and UVA, only UVB, transmitted all UV, or lacked filters. Analyses of control needles (no filter and polyethene filter) showed that the first changes to occur in spring (end of April) was an abrupt increase in the epoxidation state (EPS) of the xanthophyll cycle pigments, likely in relation with the beginning of the photosynthetic activity. The concentration of chlorophyll, lutein, neoxanthin, α‐carotene, β‐carotene, and the size of the xanthophyll cycle pool (violaxanthin+antheraxanthin+zeaxanthin=VAZ) changed only later when needles reached their summer photosynthesis state. Exclusion of UV radiation significantly affected the xanthophyll cycle but not the other photosynthetic pigments analysed. Interestingly, the effects on xanthophylls were dependent on the sampling date. Under UVA/B‐exclusion, the EPS was increased and VAZ pool size was unchanged in April, whereas EPS remained unchanged and the VAZ pool size was reduced in May and June. The existence of two sustained and active antenna modes during winter and summer could be an explanation for the specific UV‐exclusion effect in the different season. A high‐performance liquid chromatography analysis of soluble phenolics showed that the exclusion of UVA/B radiation caused a significant effect on five compounds out of 46 studied, without affecting the concentration of the total soluble phenolics. Under UVA/B‐exclusion, the concentration of three of them (secoisolariciresinol‐glucopyranoside, two unknown) was reduced while the concentration of dicoumaroyl‐astragalin and pinosylvin monomethylether was increased compared with both controls separately. In general, the exclusion of UVA/B caused a stronger effect than the exclusion of UVB on both photosynthetic and UV screening pigments. The effects of UV radiation on xanthophyll cycle pigments were season‐specific and detectable only under stressful spring conditions (freezing temperatures and high irradiance due to snow reflection). The effect on the xanthophyll cycle could be a direct consequence of UV treatments, or an indirect consequence of the changed flavonoid composition, or a combination of both.  相似文献   

6.
The molecular response mechanisms and signalling pathways activated upon exposure to ultraviolet (UV) radiation have been extensively studied within the last two decades. Although many signalling pathways can be activated by both UVA as well as UVB, there are several distinctions indicating wavelength-specific response patterns accommodated by the terms UVA response and UVB response. Given that human skin is primarily exposed to UV light from solar radiation consisting of both UVA and UVB, we sought to explore a potential interaction between the distinct UVA and UVB responses at the level of MAPK. Our results indicate that the two distinct stress responses elicited by UVA or UVB interact with each other, producing a "third" response that is different from either alone and cannot be explained by a simple addition of effects.  相似文献   

7.
The growth and production of anthocyanin, flavonoid and phenolic compounds were evaluated in Lollo Rosso lettuce ‘Revolution’ grown continuously under films varying in their ability to transmit UV radiation (completely transparent to UV, transparent above 320, 350, 370 and 380 nm and completely opaque to UV radiation). Plants were grown from seed under UV transparent and UV blocking films and destructively harvested 3–4 weeks after transplanting. Plants under a complete UV blocking film (UV400) produced up to 2.2 times more total above ground dry weight than plants under the UV transparent film. In contrast, anthocyanin content in plants under the UV blocking film was approximately eight times lower than in plants under a UV transparent film. Furthermore, there was a curvilinear relationship between the anthocyanin content and UV wavelength cutoff such that above 370 nm there was no further reduction in anthocyanin content. Fluorescence measurements indicated that photosynthetic performance index was 15% higher under the presence of UVB and UVA (UV280) than under the presence of UVA (UV320) and 53% higher than in the absence of UV radiation suggesting protection of the photosynthetic apparatus possibly by phenolic compounds. These findings are of particular importance as the potential of UV transmitting films to increase secondary compounds may offer the opportunity to produce plants commercially with increased health benefits compared to those grown under conventional films.  相似文献   

8.
To evaluate the etiologic role of ultraviolet (UV) radiation in acquired dermal melanocytosis (ADM), we investigated the effects of UVA and UVB irradiation on the development and differentiation of melanocytes in primary cultures of mouse neural crest cells (NCC) by counting the numbers of cells positive for KIT (the receptor for stem cell factor) and for the L ‐3,4‐dihydroxyphenylalanine (DOPA) oxidase reaction. No significant differences were found in the number of KIT‐ or DOPA‐positive cells between the UV‐irradiated cultures and the non‐irradiated cultures. We then examined the effects of UV light on KIT‐positive cell lines derived from mouse NCC cultures. Irradiation with UVA but not with UVB inhibited the tyrosinase activity in a tyrosinase‐positive cell line (NCCmelan5). Tyrosinase activity in the cells was markedly enhanced by treatment with α‐melanocyte‐stimulating hormone (α‐MSH), but that stimulation was inhibited by UVA or by UVB irradiation. Irradiation with UVA or UVB did not induce tyrosinase activity in a tyrosinase‐negative cell line (NCCmelb4). Levels of KIT expression in NCCmelan5 cells and in NCCmelb4 cells were significantly decreased after UV irradiation. Phosphorylation levels of extracellular signal‐regulated kinase 1/2 in cells stimulated with stem cell factor were also diminished after UV irradiation. These results suggest that UV irradiation does not stimulate but rather suppresses mouse NCC. Thus if UV irradiation is a causative factor for ADM lesions, it would not act directly on dermal melanocytes but may act in indirect manners, for instance, via the overproduction of melanogenic cytokines such as α‐MSH and/or endothelin‐1.  相似文献   

9.
Ultraviolet radiation (UVR) research on marine macroalgae has hithero focussed on physiological effects at the organism level, while little is known on the impact of UV radiation on macroalgal assemblages and even less on interactive effects with other community drivers, e.g. consumers. Field experiments on macrobenthos are scarce, particularly in the Antarctic region. Therefore, the effects of UVR and consumers (mainly limpets were excluded) on early successional stages of a hard bottom macroalgal community on King George Island, Antarctica, were studied. In a two‐factorial design experimental units [(1) ambient radiation, 280–700 nm; (2) ambient minus UVB, 320–700 nm and (3) ambient minus UVR, 400–700 nm vs. consumer–no consumer] were installed between November 2004 and March 2005 (n= 4 plus controls). Dry mass, species richness, diversity and composition of macroalgal assemblages developing on ceramic tiles were followed. Consumers significantly suppressed green algal recruits and total algal biomass but increased macroalgal richness and diversity. Both UVA and UVB radiation negatively affected macroalgal succession. UVR decreased the density of Monostroma hariotii germlings in the first 10 weeks of the experiment, whereas the density of red algal recruits was significantly depressed by UVR at the end of the study. After 106 days macroalgal diversity was significantly higher in UV depleted than in UV‐exposed assemblages. Furthermore, species richness was significantly lower in the UV treatments and species composition differed significantly between the UV‐depleted and the UV‐exposed treatment. Marine macroalgae are very important primary producers in coastal ecosystems, serving as food for herbivores and as habitat for many organisms. Both, UVR and consumers significantly shape macroalgal succession in the Antarctic intertidal. Consumers, particularly limpets can mediate negative effects of ambient UVR on richness and diversity till a certain level. UVB radiation in general and an increase of this short wavelength due to stratospheric ozone depletion in particular may have the potential to affect the zonation, composition and diversity of Antarctic intertidal seaweeds altering trophic interactions in this system.  相似文献   

10.
Ambient UV radiation has substantially increased during the last decades, but its impact on marine benthic communities is hardly known. The aim of this study was to globally compare and quantify how shallow hard‐bottom communities are affected by UV during early succession. Identical field experiments in 10 different coastal regions of both hemispheres produced a consistent but unexpected pattern: (i) UV radiation affected species diversity and community biomass in a very similar manner, (ii) diversity and biomass were reduced to a larger extent by UVA than UVB radiation, (iii) ambient UV levels did not affect the composition of the communities, and (iv) any UV effects disappeared during species succession after 2–3 months. Thus, current levels of UV radiation seem to have small, predictable, and transient effects on shallow marine hard‐bottom communities.  相似文献   

11.
Stratospheric ozone depletion increases the amount of ultraviolet‐B radiation (UVBR) (280–320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)‐fixing filamentous bloom‐forming cyanobacterium in freshwater, was individually cultured in N‐deficient and N‐enriched media for long‐term acclimation before being subjected to ultraviolet‐B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m?2 treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv/Fm) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N‐deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m?2) exposure during the recovery period. Significantly increased (~830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.  相似文献   

12.
The green macroalga Ulva pertusa Kjellman produced UV‐B absorbing compounds with a prominent absorption maximum at 294 nm in response only to UV‐B, and the amounts induced were proportional to the UV‐B doses. Under a 12:12‐h light:dark regime, the production of UV‐absorbing compounds occurred only during the exposure periods with little turnover in the dark. There was significant reduction in growth in parallel with the production of UV‐B absorbing compounds. The polychromatic action spectrum for the induction of UV‐B absorbing compounds in U. pertusa exhibits a major peak at 292 nm with a smaller peak at 311.5 nm. No significant induction was detected above 354.5 nm, and radiation below 285 nm caused significant reduction in the levels of UV‐B absorbing compounds. After UV‐B irradiation at 1.0 W·m?2 for 9 h, the optimal photosynthetic quantum yield of the samples with UV‐B absorbing compounds slightly increased relative to the initial value, whereas that of thalli lacking the compounds declined to 30%–34% of the initial followed by subsequent recovery in dim light of up to 84%–85% of the initial value. There was a positive and significant relationship between the amount of UV‐B absorbing compounds with antioxidant activity as determined by the α,α‐diphenyl‐β‐picrylhydrazyl scavenging assay. In addition to mat‐forming characteristics and light‐driven photorepair, the existence and antioxidant capacity of UV‐B absorbing compounds may confer U. pertusa a greater selective advantage over other macroalgae, thereby enabling them to thrive in the presence of intense UV‐B radiation.  相似文献   

13.
Boreal tree species are excellent tools for studying tolerance to climate change. Bud phenology is a trait, which is highly sensitive to environmental fluctuations and thus useful for climate change investigations. However, experimental studies of bud phenology under simulated climate change outdoors are deficient. We conducted a multifactorial field experiment with single (T, UVA, UVB) and combined treatments (UVA+T, UVB+T) of elevated temperature (T, +2°C) and ultraviolet‐B radiation (+30% UVB) in order to examine their impact on both male and female genotypes of aspen (Populus tremula L.). This study focuses on the effect of the treatments in years 2 and 3 after planting (2013, 2014) and follows how bud phenology is adapting in year 4 (2015), when the treatments were discontinued. Moreover, the effect of bud removal was recorded. We found that elevated temperature played a key role in delaying bud set and forcing bud break in intact individuals, as well as slightly delaying bud break in bud‐removed individuals. UVB delayed the bud break in bud‐removed males. In addition, both UVA and UVB interacted with temperature in year 3 and even in year 4, when the treatments were off, but only in male individuals. Axillary bud removal forced both bud break and bud set under combined treatments (UVA+T, UVB+T) and delayed both under individual treatments (T, UVB). In conclusion, male aspens were more responsive to the treatments than females and that effect of elevated temperature and UV radiation on bud set and bud break of aspen is not disappearing over 4‐year study period.  相似文献   

14.
Anthropogenic stratospheric ozone depletion causes an increase in UVB radiation impinging on the earth's surface, which is a threat to plants not adapted to higher UVB irradiances. Investigations were carried out among tropical marine macrophytes, Turbinaria turbinata, Sargassum polyceratium var. ovatum, Padina sanctae-crucis, Lobophora variegate, Dictyota spec., Halimeda discoidea, Udotea flabellum, Thalassia testudinum and Syringodium filiforme collected from 0.3 to 26 m depths at the Belizean barrier reef, where ultraviolet radiation (UV)-irradiances are naturally high. Photoinhibition was induced under full solar, UV (UVA + UVB), and UVA only-depleted radiation conditions. Photosynthetic activity during high radiation stress and during recovery in reduced solar radiation was determined in vivo by measuring fluorescence changes using a PAM fluorometer device. Generally, UV caused an additional decrease of photosynthetic performance during high light stress which varies according to species, depth of growth and UV penetration at the site of collection; an observation in concordance with the conventional harmful UV-radiation effects on phototrophs. When solar radiation was reduced by 50%, significant photosynthetic recovery was observed. However, some shallow water species which are adapted to high UV were observed to recover less under treatment with depleted solar UVB radiation. Our result supports earlier reports that UVB causes not only negative effects on photosynthesis, but may also facilitate or induce recovery processes in aquatic macrophytes acclimated to high solar radiation which grow at the upper shoreline. Among the eulittoral macroalgae, e.g. Dictyota spec., P. sanctae-crucis, and H. discoidea and the seagrass T. testudinum, initiation of photosynthetic recovery processes in the presence of low irradiance of short UV-wavelengths may present an ecophysiological advantage compared to macrophytes which initiate photosynthetic recovery process during low light or in the absence of UV.  相似文献   

15.
The sensitivity of different life stages of the eulittoral green alga Urospora penicilliformis (Roth) Aresch. to ultraviolet radiation (UVR) was examined in the laboratory. Gametophytic filaments and propagules (zoospores and gametes) released from filaments were separately exposed to different fluence of radiation treatments consisting of PAR (P = 400–700 nm), PAR + ultraviolet A (UVA) (PA, UVA = 320–400 nm), and PAR + UVA + ultraviolet B (UVB) (PAB, UVB = 280–320 nm). Photophysiological indices (ETRmax, Ek, and α) derived from rapid light curves were measured in controls, while photosynthetic efficiency and amount of DNA lesions in terms of cyclobutane pyrimidine dimers (CPDs) were measured after exposure to radiation treatments and after recovery in low PAR; pigments of propagules were quantified after exposure treatment only. The photosynthetic conversion efficiency (α) and photosynthetic capacity (rETRmax) were higher in gametophytes compared with the propagules. The propagules were slightly more sensitive to UVB‐induced DNA damage; however, both life stages of the eulittoral inhabiting turf alga were not severely affected by the negative impacts of UVR. Exposure to a maximum of 8 h UVR caused mild effects on the photochemical efficiency of PSII and induced minimal DNA lesions in both the gametophytes and propagules. Pigment concentrations were not significantly different between PAR‐exposed and PAR + UVR–exposed propagules. Our data showed that U. penicilliformis from the Antarctic is rather insensitive to the applied UVR. This amphi‐equatorial species possesses different protective mechanisms that can cope with high UVR in cold‐temperate waters of both hemispheres and in polar regions under conditions of increasing UVR as a consequence of further reduction of stratospheric ozone.  相似文献   

16.
To study the effect of different radiation conditions on sporogenesis of Laminaria digitata (Huds.) J. V. Lamour., excised disks were induced to form sporangia under PAR (P), PAR + ultraviolet‐A (UVA) (PA), and PAR + UVA + ultraviolet‐B (UVB) (PAB) conditions in the laboratory. Vitality of meiospores, released from sori induced under different radiation conditions in the laboratory and from sori of wild sporophytes acclimated to in situ solar radiation in the presence and absence of ultraviolet radiation (UVR), was measured in terms of their germination capacity. Sorus induction in disks of laboratory‐grown sporophytes was not hampered under light supplemented with UVR, and sorus area was not significantly different among P, PA, and PAB. Vitality and germination rate of meiospores released from sori induced under different radiation treatments was comparable. Likewise, screening of UVR of the natural solar radiation did not promote higher germination rates of meiospores released from wild sporophytes. Germination rates were, however, higher in meiospores released from laboratory‐induced sori compared to sori of wild sporophytes. Higher DNA damage (formation of cyclobutane pyrimidine dimers, CPDs) was observed in laboratory‐grown nonsorus compared to sorus tissue, while CPDs were nondetectable in both sorus and nonsorus tissue of wild sporophytes. To explain the apparent protection of developing meiospores and the unexpected UV resistance of soral tissue, concurrent anatomical investigations of sporogenic tissue were performed. We observed the previously unreported existence of two types of sterile paraphysis cells. One type of paraphysis cells, the most frequent type, contained several red‐fluorescing plastids. The other type, less frequently occurring, was completely filled with substances emitting blue fluorescence under violet excitation, presumably brown algal phenolic compounds (phlorotannins). Cells of this type were irregularly scattered within the sorus and did not contain red‐fluorescing plastids. Meiospore‐containing sporangia were positioned embedded between both types of paraphysis cells. In vegetative tissue, blue autofluorescence was observed only in injured parts of the blade. Results of our study suggest that the sorus structure with phlorotannins localized in the specialized paraphysis cells may be able to screen harmful UVR and protect UV‐sensitive meiospores inside the sporangia.  相似文献   

17.
Photoinhibition and recovery kinetics after short exposure to solar radiation following three different irradiance treatments of irradiances (PAR, PAR+UVA and PAR+UVA+UVB) was assessed in two intertidal species of the genus Gelidium, Gelidium sesquipedale and G. latifolium, collected from Tarifa (southern Spain) using in vivo chlorophyll fluorescence (PAM fluorometry). After 3 h UV radiation exposure, optimal quantum efficiency (Fv/Fm) in G. sesquipedale decreased between 25 and 35% relative to the control. Under PAR alone, values decreased to 60%. In G. latifolium, photoinhibition did not exceed 40%. Similar results were found for the effective quantum yield (ΔF/Fm′), however, no marked differences in relation to light treatments were seen. When plants were shaded for recovery from stress, only in G. latifolium a significant increase in photosynthesis was observed (between 80 and 100% of control). In contrast, photosynthesis of G. sesquipedale suffered a chronic photoinhibition or photodamage under the three light irradiances. Full solar radiation (PAR+UVA+UVB) affected also the electron transport rate in both species. Here, initial slopes of electron transport vs. irradiance curves decreased up to 60% of controls. Although the recovery kinetic under PAR+UVA+UVB conditions was delayed in G. latifolium, after 24 h recovery this species reached significantly higher than G. sesquipedale. PAR impaired electron trasport only in G. sesquipedale. Overall, both species are characterized by different capacity to tolerate enhanced solar radiation. G. latifolium is a sun adapted plant, well suited to intertidal light conditions, whereas G. sesquipedale, growing at shaded sites in the intertidal zone, is more vulnerable to enhanced UV radiation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Mycosporine‐like amino acids (MAAs) are regarded as powerful sunscreens protecting the algae against harmful UV radiation. The MAA protection efficiency was tested in algal samples by measuring the optimum quantum yield of photosynthesis using photosystem II fluorescence. It could be demonstrated that the recovery of photosynthesis after exposure to enhanced UV radiation is faster in individuals with high MAA content. MAAs can be synthesized in several polar macroalgae in response to different radiation conditions. Although MAA induction patterns are very species‐specific, some similarities can be found. Field studies indicate that plants from different growth habitats providing distinct radiation climate can be grouped into three physiological categories depending on their MAA content. The first group (I) includes mainly deep‐water species, typically lacking MAAs. The second group (II), algal species found in a broad range of water depths (eu‐ and sublittoral), which are able to flexibly synthesize and accumulate MAAs. The third group (III) includes supra‐ and eulittoral taxa, which always contain high MAA concentrations. In laboratory studies, we showed that taxa of group II and III responded in three different ways based on MAA accumulation when exposed to different radiation conditions (PAR, PAR + UVA, PAR + UVA + UVB). Either they: (a) exhibit highest total MAA concentration under the full artificial spectrum; (b) increase their MAA concentration after exposure to PAR and PAR + UVA or (c) MAA concentration declines after exposure to the full spectrum. Our studies have indicated that when coupled with UVR, exposure to temperature fluctuations ranging from 0 to 10 °C also affect MAA biosynthesis.  相似文献   

19.
We studied the ability of tree seedlings to respond to two environmental factors, elevated ultraviolet B (UVB) radiation and availability of nitrogen (N), at the beginning of their development. Seeds of two birch species, Betula pubescens Ehrh. (common white birch) and B. pendula Roth (silver birch), were germinated and the seedlings grown in an experimental field in eastern Finland. The experimental design consisted of a constant 50% increase in UVB radiation (including a slight increase in UVA), a UVA control (a slight increase in UVA) and a control. The seedlings were fertilized with three levels of N. The experiment lasted for 2 months; aboveground biomass was measured and the most mature leaf of each seedling was taken for the analyses of phenolics. Growth of the seedlings was not significantly affected by enhanced UVB, but was increased by increasing N. Elevated UVB induced significant changes in phenolic compounds. Quercetin glycosides were accumulated in the leaves of both species in response to UVB; this is considered to be a protective response. However, the direction of the responses of individual phenolics to different N regimens differed. In addition, concentration of soluble condensed tannins was lower at moderate N than that at lower levels of N in both species; on the contrary, in B. pubescens the concentration of insoluble condensed tannins was highest at moderate N. No significant interaction between UV and N was detected, and the responses of the two species were highly similar to UVB, while the responses to N regimens varied slightly more between species.  相似文献   

20.
Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm2 for UVA and 2.15 J/cm2 for UVB. Maximal response was achieved with 10.0 J/cm2 UVA and 8.6 J/cm2 UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm2 UVA and 0.29 J/cm2 UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号