首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chen X  Li Y  Huang J  Cao D  Yang G  Liu W  Lu H  Guo A 《Cell and tissue research》2007,329(1):169-178
The microtubule-binding protein tau has been investigated for its contribution to various neurodegenerative disorders. However, the findings from transgenic studies, using the same tau transgene, vary widely among different laboratories. Here, we have investigated the potential mechanisms underlying tauopathies by comparing Drosophila (d-tau) and human (h-tau) tau in a Drosophila model. Overexpression of a single copy of either tau isoform in the retina results in a similar rough eye phenotype. However, co-expression of Par-1 with d-tau leads to lethality, whereas co-expression of Par-1 with h-tau has little effect on the rough eye phenotype. We have found analogous results by comparing larval proteomes. Through genetic screening and proteomic analysis, we have identified some important potential modifiers and tau-associated proteins. These results suggest that the two tau genes differ significantly. This comparison between species-specific isoforms may help to clarify whether the homologous tau genes are conserved. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This study was supported by the National Science Foundation of China (30270341; 30630028), the Multidisciplinary Program (Brain and Mind) of the Chinese Academy of Sciences, the Major State Basic Research Program (“973 program”; G2000077800; G2006CB806600; 2006CB911003), the Precedent Project of Important Intersectional Disciplines in the Knowledge Innovation Engineering of the Chinese Academy of Sciences (KJCX1-09-03).  相似文献   

3.
4.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
A report of the 48th Annual Drosophila Research Conference, Philadelphia, USA, 7-11 March 2007.  相似文献   

6.

Background  

Recent translocations of autosomal regions to the sex chromosomes represent important systems for identifying the evolutionary forces affecting convergent patterns of sex-chromosome heteromorphism. Additions to the sex chromosomes have been reported in the melanica and robusta species groups, two sister clades of Drosophila. The close relationship between these two species groups and the similarity of their rearranged karyotypes motivates this test of alternative hypotheses; the rearranged sex chromosomes in both groups are derived through a common origin, or the rearrangements are derived through at least two independent origins. Here we examine chromosomal arrangement in representatives of the melanica and the robusta species groups and test these alternative hypotheses using a phylogenetic approach.  相似文献   

7.
The Hox gene Sex combs reduced (Scr) is responsible for the differentiation of the labial and prothoracic segments in Drosophila. Scr is expressed in several specific tissues throughout embryonic development, following a complex path that must be coordinated by an equally complex regulatory region. Although some cis-regulatory modules (CRMs) have been identified in the Scr regulatory region (~75 kb), there has been no detailed and systematic study of the distinct regulatory elements present within this region. In this study, the Scr regulatory region was revisited with the aim of filling this gap. We focused on the identification of Initiator elements (IEs) that bind segmentation factors, Polycomb response elements (PREs) that are recognized by the Polycomb and Trithorax complexes, as well as insulators and tethering elements. To this end, we summarized all currently available information, mainly obtained from high throughput ChIP data projects. In addition, a bioinformatic analysis based on the evolutionary conservation of regulatory sequences using the software MOTEVO was performed to identify IE and PRE candidates in the Scr region. The results obtained by this combined strategy are largely consistent with the CRMs previously identified in the Scr region and help to: (i) delimit them more accurately, (ii) subdivide two of them into different independent elements, (iii) identify a new CRM, (iv) identify the composition of their binding sites and (v) better define some of their characteristics. These positive results indicate that an approach that integrates functional and bioinformatic data might be useful to characterize other regulatory regions.  相似文献   

8.
Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.  相似文献   

9.
Rab11, an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In order to gain an insight into the role of this gene in myogenesis during embryonic development, we have studied the expression pattern of Rab11 in mesoderm during muscle differentiation in Drosophila embryo. When dominant-negative or constitutively active Drosophila Rab11 proteins are expressed or Rab11 is reduced via double-stranded RNA in muscle precursors, they cause partial failure of myoblast fusion and show anomalies in the shape of the muscle fibres. Our results suggest that Rab11 plays no role in cell fate specification in muscle precursors but is required late in the process of myoblast fusion. This work was supported by grants from the DST (to J.K.R.) and SRF from ICMR, New Delhi (to T.B.).  相似文献   

10.
Antibodies are very often used as specific cell and/or tissue markers. An example of this is anti-horseradish peroxidase (HRP), an antibody raised against a plant glycoprotein, which was shown some twenty-five years ago to specifically stain neural tissue in an animal, Drosophila melanogaster. This peculiar finding was later expanded to other invertebrate species including Caenorhabditis elegans, which were also shown to bear anti-HRP epitopes. Initial experiments indicated that the epitopes recognised by anti-HRP in invertebrates are of carbohydrate nature. Indeed, more recent experiments have characterised relevant core α1-3-fucosylated N-glycan structures that act as epitopes in various model and parasitic organisms. Moreover, a number of enzymes required for the synthesis of such structures have been identified. Over the years, medically-relevant roles of these structures have become apparent as regards allergenicity and immunoregulation. Although major advances have been made in understanding of the underlying mechanisms and structures related to the anti-HRP epitope, the in vivo role of the relevant epitopes in neural and other tissues is yet to be resolved. Current understanding of the anti-HRP epitopes synthesis and their relevance is discussed and elaborated.
Katharina PaschingerEmail:
  相似文献   

11.
RBP1 is an important splicing factor involved in alternative splicing of the pre-mRNA of Drosophila sex-determining gene dsx. In this work, the Bombyx mori homologue of the rbp1 gene, Bmrbp1, was cloned. The pre-mRNA of Bmrbp1 gene is alternatively spliced to produce four mature mRNAs, named Bmrbp1-PA, Bmrbp1-PB, Bmrbp1-PC and Bmrbp1-PD, with nucleotide lengths of 799 nt, 1,316 nt, 894 nt and 724 nt, coding for 142 aa, 159 aa, 91 aa and 117 aa, respectively. BmRBP1-PA and BmRBP1-PD contain a N terminal RNA recognization motif (RRM) and a C terminal arginine/serine-rich domain, while BmRBP1-PB and BmRBP1-PC only share a RRM. Amino acid sequence alignments showed that BmRBP1 is conserved with its homologues in other insects and with other SR family proteins. The RT-PCR showed that Bmrbp1-PA was strongly expressed in all examined tissues and development stages, but Bmrbp1-PB was weakly expressed in these tissues and stages. The expression of both Bmrbp1-PA and Bmrbp1-PB showed no obvious sex difference. While the Bmrbp1-PC and Bmrbp1-PD were beyond detection by RT-PCR very likely due to their tissue/stage specificity. These results suggested that Bmrbp1 should be a member of SR family splicing factors, whether it is involved in the sex-specific splicing of Bmdsx pre-mRNA needs further research.  相似文献   

12.
Collective migration of loosely or closely associated cell groups is prevalent in animal development, physiological events, and cancer metastasis. However, our understanding of the mechanisms of collective cell migration is incomplete. Drosophila border cells provide a powerful in vivo genetic model to study collective migration and identify essential genes for this process. Using border cell-specific RNAi-silencing in Drosophila, we knocked down 360 conserved signaling transduction genes in adult flies to identify essential pathways and genes for border cell migration. We uncovered a plethora of signaling genes, a large proportion of which had not been reported for border cells, including Rack1 (Receptor of activated C kinase) and brk (brinker), mad (mother against dpp), and sax (saxophone), which encode three components of TGF-β signaling. The RNAi knock down phenotype was validated by clonal analysis of Rack1 mutants. Our data suggest that inhibition of Src activity by Rack1 may be important for border cell migration and cluster cohesion maintenance. Lastly, results from our screen not only would shed light on signaling pathways involved in collective migration during embryogenesis and organogenesis in general, but also could help our understanding for the functions of conserved human genes involved in cancer metastasis.  相似文献   

13.
Polycomb group (PcG) proteins are required to maintain a stable repression of the homeotic genes during Drosophila development. Mutants in the PcG gene Supressor of zeste 12 (Su(z)12) exhibit strong homeotic transformations caused by widespread misexpression of several homeotic genes in embryos and larvae. Su(z)12 has also been suggested to be involved in position effect variegation and in regulation of the white gene expression in combination with zeste. To elucidate whether SU(Z)12 has any such direct functions we investigated the binding pattern to polytene chromosomes and compared the localization to other proteins. We found that SU(Z)12 binds to about 90 specific eukaryotic sites, however, not the white locus. We also find staining at the chromocenter and the nucleolus. The binding along chromosome arms is mostly in interbands and these sites correlate precisely with those of Enhancer-of-zeste and other components of the PRC2 silencing complex. This implies that SU(Z)12 mainly exists in complex with PRC2. Comparisons with other PcG protein-binding patterns reveal extensive overlap. However, SU(Z)12 binding sites and histone 3 trimethylated lysine 27 residues (3meK27 H3) do not correlate that well. Still, we show that Su(z)12 is essential for tri-methylation of the lysine 27 residue of histone H3 in vivo, and that overexpression of SU(Z)12 in somatic clones results in higher levels of histone methylation, indicating that SU(Z)12 is rate limiting for the enzymatic activity of PRC2. In addition, we analyzed the binding pattern of Heterochromatin Protein 1 (HP1) and found that SU(Z)12 and HP1 do not co-localize.  相似文献   

14.
Every population possesses genetic variations which are achieved through gene mutation, genetic recombination, hybridization, gene duplication etc. These genetic variations provide raw materials for evolutionary forces to create a better surviving species. Genetic polymorphism is reflected at every level in the populations, for example, at phenotypic, chromosomal, protein and DNA levels. Protein or enzyme polymorphisms have been well studied in various organisms including Drosophila and humans. Drosophila has proven to be a good model organism for carrying out polymorphism studies. Among the different species of Drosophila, there is a wide variation in the levels of allozyme polymorphisms and heterozygosities which depends upon species, geographical regions, number and nature of loci in question etc. In Drosophila, the average polymorphic enzyme loci and average heterozygosity ranges from 35 to 70 percent and 10 to 20 percent respectively. The genetic differentiation as observed through allozyme or isozyme variation affords an important parameter in evaluating the phylogenetic relationships between different species of Drosophila and also for discussing the adaptive significance of allozyme polymorphisms. Therefore, this review attempts to compile all studies on allozyme polymorphism in Drosophila that have been undertaken so far.  相似文献   

15.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

16.
In Drosophila, the checkpoint protein-2 kinase (DmChk2) and its downstream effector protein, Dmp53, are required for DNA damage-mediated cell cycle arrest, DNA repair and apoptosis. In this study we focus on understanding the function of these two apoptosis inducing factors during ovarian development. We found that expression of Dmp53, but not DmChk2, led to loss of ovarian stem cells. We demonstrate that expression of DmChk2, but not Dmp53, induced mid-oogenesis cell death. DmChk2 induced cell death was not suppressed by Dmp53 mutant, revealing for the first time that in Drosophila, over-expression of DmChk2 can induce cell death which is independent of Dmp53. We found that over-expression of caspase inhibitors such as DIAP1, p35 and p49 did not suppress DmChk2- and Dmp53-induced cell death. Thus, our study reveals stage-specific effects of Dmp53 and DmChk2 in oogenesis. Moreover, our results demonstrate that although DmChk2 and Dmp53 affect different stages of ovarian development, loss of ovarian stem cells by p53 expression and mid-oogenesis cell death induced by DmChk2 do not require caspase activity.  相似文献   

17.
Mitochondria play essential roles in development and disease. The characterisation of mitochondrial proteins is therefore of particular importance. The slowmo (slmo) gene of Drosophila melanogaster has been shown to encode a novel type of mitochondrial protein, and is essential in the developing central nervous system. The Slmo protein contains a conserved PRELI/MSF1p domain, found in proteins from a wide variety of eukaryotic organisms. However, the function of the proteins of this family is currently unknown. In this study, the evolutionary relationships between members of the PRELI/MSF1p family are described, and we present the first analysis of two novel Drosophila genes predicted to encode proteins of this type. The first of these, preli-like (prel), is expressed ubiquitously during embryonic development, whilst the second, real-time (retm), is expressed dynamically in the developing gut and central nervous system. retm encodes a member of a novel conserved subclass of larger PRELI/MSF1p domain proteins, which also contain the CRAL-TRIO motif thought to mediate the transport of small hydrophobic ligands. Here we provide evidence that, like Slmo, both the Prel and Retm proteins are localised to the mitochondria, indicating that the function of the PRELI/MSF1p domain is specific to this organelle.Edited by P. Simpson  相似文献   

18.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

19.
20.
In eukaryotes, membrane trafficking is regulated by the small monomeric GTPases of Rab protein family. Rab11, an evolutionary conserved, ubiquitously expressed subfamily of the Rab GTPases, has been implicated in the regulation of vesicular trafficking through the recycling of endosomes. To dissect out the role of this protein during embryonic nervous system development, we have studied the expression pattern of Rab11 in the ventral nerve cord during neuronal differentiation in the Drosophila embryo. When the dominant-negative or constitutively-active mutant DRab11 proteins are expressed in neurons, or when homozygous mutant Rab11 embryos are analyzed, defects are found in the developing central nervous system, along with disorganization and misrouting of embryonic axons. Our results provide the first in vivo evidence that Rab11 is involved in the development of the nervous system during Drosophila embryogenesis. This work was supported by the DST (to J.K.R.) and SRF from ICMR, New Delhi (to T.B.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号