首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In higher eukaryotic cells, chromosomes are folded inside the nucleus. Recent advances in whole-genome mapping technologies have revealed the multiscale features of 3D genome organization that are intertwined with fundamental genome functions. However, DNA sequence determinants that modulate the formation of 3D genome organization remain poorly characterized. In the past few years, predicting 3D genome organization based on DNA sequence features has become an active area of research. Here, we review the recent progress in computational approaches to unraveling important sequence elements for 3D genome organization. In particular, we discuss the rapid development of machine learning-based methods that facilitate the connections between DNA sequence features and 3D genome architectures at different scales. While much progress has been made in developing predictive models for revealing important sequence features for 3D genome organization, new research is urgently needed to incorporate multi-omic data and enhance model interpretability, further advancing our understanding of gene regulation mechanisms through the lens of 3D genome organization.  相似文献   

2.
3.
In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes.  相似文献   

4.
5.
Genes and genomes of parasitic nematodes   总被引:10,自引:0,他引:10  
Our knowledge of gene and genome organization in nematodes is growing rapidly, partly as a result of the Caenorhabditis elegans genome project. Here Martin Hammond and Ted Bianco review what is known about the organization of genes and genomes in parasitic nematode species, using information gained from molecular and cytological approaches. They suggest that there are implications not only for a wide range of problems in parasitology but also for our understanding of genome evolution in eukaryotes.  相似文献   

6.
7.
Sequence organization of the human genome   总被引:1,自引:0,他引:1  
The organization of three sequence classes—single copy, repetitive, and inverted repeated sequences—within the human genome has been studied by renaturation techniques, hydroxylapatite binding methods, and DNA hyperchromism. Repetitive sequence classes are distributed throughout 80% or more of the genome. Slightly more than half of the genome consists of short single copy sequences, with a length of about 2 kb interspersed with repetitive sequences. The average length of the repetitive sequences is also small and approximates the length of these sequences found in other organisms. The sequence organization of the human genome therefore resembles the sequence organization found in Xenopus and sea urchin. The inverted repeats are essentially randomly positioned with respect to both sequence class and sequence arrangement, so that all three sequence classes are found to be mutually interspersed in a portion of the genome.  相似文献   

8.
In eukaryotic genome biology, the genomic organization inside the three-dimensional(3 D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina(NL)is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains(LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin(PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region,how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.  相似文献   

9.
10.
11.
1. The genome of Amphioxus was investigated by DNA reassociation techniques for the amount of repetitive and non-repetitive sequences and its pattern of organization. 2. A comparison of the amount of non-repetitive DNA between Amphioxus and the tunicate Ciona intestinalis does not support the hypothesis that the Cephalochordates have arisen from the Tunicates by polyploidy. 3. In the Amphioxus genome repetitive and non-repetitive elements are predominantly arranged in a short period interspersion pattern. Conclusions are presented as to the evolution of contrasting genome organization patterns among vertebrates.  相似文献   

12.
Computer-assisted analysis of the amino acid sequence of the product encoded by the sequenced 3' portion of the cricket paralysis virus (CrPV), an insect picornavirus, genome showed that this protein is homologous not to the RNA-directed RNA polymerases, as originally suggested, but to the capsid proteins of mammalian picornaviruses. Alignment of the CrPV protein sequence with those of picornavirus and calicivirus capsid proteins demonstrated that the sequenced portion of the insect picornavirus genome encodes the C-terminal part of VP3 and the entire VP1. Thus CrPV seems to have a genome organization distinct from that of other picornaviruses but closely resembling that of caliciviruses, with the capsid proteins encoded in the 3' part of the genome. On the other hand, the tentative phylogenetic trees generated from the VP3 alignment revealed grouping of CrPV with hepatitis A virus, a true picornavirus, not with caliciviruses. Thus CrPV may be a picornavirus with a calicivirus-like genome organization. Different options for CrPV genome expression are discussed.  相似文献   

13.
We show the negative link between genome size and metabolic intensity in tetrapods, using the heart index (relative heart mass) as a unified indicator of metabolic intensity in poikilothermal and homeothermal animals. We found two separate regression lines of heart index on genome size for reptiles-birds and amphibians-mammals (the slope of regression is steeper in reptiles-birds). We also show a negative correlation between GC content and nucleosome formation potential in vertebrate DNA, and, consistent with this relationship, a positive correlation between genome GC content and nuclear size (independent of genome size). It is known that there are two separate regression lines of genome GC content on genome size for reptiles-birds and amphibians-mammals: reptiles-birds have the relatively higher GC content (for their genome sizes) compared to amphibians-mammals. Our results suggest uniting all these data into one concept. The slope of negative regression between GC content and nucleosome formation potential is steeper in exons than in non-coding DNA (where nucleosome formation potential is generally higher), which indicates a special role of non-coding DNA for orderly chromatin organization. The chromatin condensation and nuclear size are supposed to be key parameters that accommodate the effects of both genome size and GC content and connect them with metabolic intensity. Our data suggest that the reptilian-birds clade evolved special relationships among these parameters, whereas mammals preserved the amphibian-like relationships. Surprisingly, mammals, although acquiring a more complex general organization, seem to retain certain genome-related properties that are similar to amphibians. At the same time, the slope of regression between nucleosome formation potential and GC content is steeper in poikilothermal than in homeothermal genomes, which suggests that mammals and birds acquired certain common features of genomic organization.  相似文献   

14.
Higher order chromatin structure, i.e. the three-dimensional (3D) organization of the genome in the interphase nucleus, is an important component in the orchestration of gene expression in the mammalian genome. In this review we describe principles of higher order chromatin structure discussing three organizational parameters, i.e. chromatin folding, chromatin compaction and the nuclear position of the chromatin fibre. We argue that principles of 3D genome organization are probabilistic traits, reflected in a considerable cell-to-cell variation in 3D genome structure. It will be essential to understand how such higher order organizational aspects contribute to genome function to unveil global genome regulation.  相似文献   

15.
The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.  相似文献   

16.
Higher-order chromatin structure: looping long molecules   总被引:2,自引:0,他引:2  
  相似文献   

17.
18.
For the past four decades the compositional organization of the mammalian genome posed a formidable challenge to molecular evolutionists attempting to explain it from an evolutionary perspective. Unfortunately, most of the explanations adhered to the “isochore theory,” which has long been rebutted. Recently, an alternative compositional domain model was proposed depicting the human and cow genomes as composed mostly of short compositionally homogeneous and nonhomogeneous domains and a few long ones. We test the validity of this model through a rigorous sequence-based analysis of eleven completely sequenced mammalian and avian genomes. Seven attributes of compositional domains are used in the analyses: (1) the number of compositional domains, (2) compositional domain-length distribution, (3) density of compositional domains, (4) genome coverage by the different domain types, (5) degree of fit to a power-law distribution, (6) compositional domain GC content, and (7) the joint distribution of GC content and length of the different domain types. We discuss the evolution of these attributes in light of two competing phylogenetic hypotheses that differ from each other in the validity of clade Euarchontoglires. If valid, the murid genome compositional organization would be a derived state and exhibit a high similarity to that of other mammals. If invalid, the murid genome compositional organization would be closer to an ancestral state. We demonstrate that the compositional organization of the murid genome differs from those of primates and laurasiatherians, a phenomenon previously termed the “murid shift,” and in many ways resembles the genome of opossum. We find no support to the “isochore theory.” Instead, our findings depict the mammalian genome as a tapestry of mostly short homogeneous and nonhomogeneous domains and few long ones thus providing strong evidence in favor of the compositional domain model and seem to invalidate clade Euarchontoglires.  相似文献   

19.
The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin-dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.  相似文献   

20.
Summary Plants have been regenerated from short-and long-term in vitro somatic tissue cultures made from immature embryos of the hexaploid wheat cultivar Chinese Spring. The mitochondrial genome organization of each regenerated plantlet was studied, after one selfing, by probing Sal I-restricted total DNA with cloned Sal I fragments of wheat mitochondrial DNA derived from a segment of the genome, which displays marked structural changes in response to in vitro culture. Short-term in vitro cultures give rise to regenerated plants whose mitochondrial genome organization is either close to that of the parental cultivar or to that of embryogenic callus cultures, except for a single plant which has an organization resembling that of short-term non-embryogenic cultures. In contrast, all but one of the plants regenerated from long-term cultures exhibited a mitochondrial genome organization similar to that of long-term nonembryogenic cultures. In addition, extra labelled bands were detected in some of the regenerated plants with two of the probes used. These results emphasize the importance of the duration of the in vitro step preceding the regeneration process: the longer it is, the higher the probability is of obtaining mitochondrial DNA variability in regenerated plants. Furthermore, since increasing the duration of the in vitro stetp results in the production of regenerated plants with a mitochondrial genome organization resembling that of non-embryogenic tissue cultures, the question is thus raised as to whether regeneration from long-term cultures is suitable for use in plant breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号