共查询到20条相似文献,搜索用时 15 毫秒
1.
Stephanie A. Schopmeyer Diego Lirman Erich Bartels James Byrne David S. Gilliam John Hunt Meaghan E. Johnson Elizabeth A. Larson Kerry Maxwell Ken Nedimyer Cory Walter 《Restoration Ecology》2012,20(6):696-703
During an unusual cold‐water event in January 2010, reefs along the Florida Reef Tract suffered extensive coral mortality, especially in shallow reef habitats in close proximity to shore and with connections to coastal bays. The threatened staghorn coral, Acropora cervicornis, is the focus of propagation and restoration activities in Florida and one of the species that exhibited high susceptibility to low temperatures. Complete mortality of wild staghorn colonies was documented at 42.9% of donor sites surveyed after the cold event. Remarkably, 72.7% of sites with complete A. cervicornis mortality had fragments surviving within in situ coral nurseries. Thus, coral nurseries served as repositories for genetic material that would have otherwise been completely lost from donor sites. The location of the coral nurseries at deeper habitats and distanced from shallow nearshore habitats that experienced extreme temperature conditions buffered the impacts of the cold‐water event and preserved essential local genotypes for future Acropora restoration activities. 相似文献
2.
More than one genotype: how common is intracolonial genetic variability in scleractinian corals? 下载免费PDF全文
Maximilian Schweinsberg Linda C. Weiss Sebastian Striewski Ralph Tollrian Kathrin P. Lampert 《Molecular ecology》2015,24(11):2673-2685
In recent years, a few colonial marine invertebrates have shown intracolonial genetic variability, a previously unreported phenomenon. Intracolonial genetic variability describes the occurrence of more than a single genotype within an individual colony. This variability can be traced back to two underlying processes: chimerism and mosaicism. Chimerism is the fusion of two or more individuals, whereas mosaicism mostly derives from somatic cell mutations. Until now, it remained unclear to what degree the ecologically important group of hermatypic (reef building) corals might be affected. We investigate the occurrence of intracolonial genetic variability in five scleractinian corals: Acropora florida, Acropora hyacinthus, Acropora sarmentosa, Pocillopora species complex and Porites australiensis. The main focus was to test different genera for the phenomenon via microsatellite markers and to distinguish which underlying process caused the genetic heterogeneity. Our results show that intracolonial genetic variability was common (between 46.6% for A. sarmentosa and 23.8% for P. species complex) in all tested corals. The main process was mosaicism (69 cases of 222 tested colonies), but at least one chimera existed in every species. This suggests that intracolonial genetic variability is widespread in scleractinian corals and could challenge the view of a coral colony as an individual and therefore a unit of selection. However, it might also hold potential for colony survival under rapidly changing environmental conditions. 相似文献
3.
4.
Graham E. Forrester Caitlin O'Connell‐Rodwell Patricia Baily Linda M. Forrester Sandra Giovannini Lindsay Harmon Rebecca Karis Jason Krumholz Timothy Rodwell Lianna Jarecki 《Restoration Ecology》2011,19(3):299-306
Restoration of rare corals is desirable and restoration projects are fairly common, but scientific evaluation of this approach is limited. We tested several techniques for transplant and restabilization of Acropora palmata (the elkhorn coral), an ecologically important Caribbean coral whose populations have suffered severe declines. In rough weather, fragments break‐off colonies of branching corals like A. palmata as a normal form of asexual reproduction. We transplanted naturally produced coral fragments from remnant populations to nearby restoration sites. Untouched control fragments at the donor site died faster and grew slower than fragments attached to the reef, so attaching fragments to the reef is beneficial. Transplanted fragments grew and died at a rate similar to fragments left at the donor site (both groups were attached to the reef), so there were no effects of moving fragments or differences in habitat quality between donor and restoration sites. Growth and survival were similar using four methods of attaching fragments to the reef: cable ties, two types of epoxy resin, and hydrostatic cement. Corals sometimes compete with the macroalgae that dominate degraded reefs, and clearing surrounding algae improved the growth of fragments. After 4 years, transplanted fragments grew to 1,450 cm2 in area and so were potentially sexually active. Because the methods tested are simple and cheap, they could be used by volunteer recreational divers to restore locally extirpated A. palmata populations or to enhance reefs where natural recovery is slow. 相似文献
5.
6.
Regional‐scale dominance of non‐framework building corals on Caribbean reefs affects carbonate production and future reef growth 下载免费PDF全文
Chris T. Perry Robert S. Steneck Gary N. Murphy Paul S. Kench Evan N. Edinger Scott G. Smithers Peter J. Mumby 《Global Change Biology》2015,21(3):1153-1164
Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non‐framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3 m?2 yr?1. However, non‐framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non‐framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean‐wide dominance of non‐framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non‐framework building coral species will further reduce carbonate production rates below ‘predecline’ levels, resulting in shifts towards negative carbonate budget states and reducing reef growth potential. 相似文献
7.
Scott R. Santos 《Molecular ecology》2014,23(17):4185-4187
The modern synthesis was a seminal period in the biological sciences, establishing many of the core principles of evolutionary biology that we know today. Significant catalysts were the contributions of R.A. Fisher, J.B.S. Haldane and Sewall Wright (and others) developing the theoretical underpinning of population genetics, thus demonstrating adaptive evolution resulted from the interplay of forces such as natural selection and mutation within groups of individuals occupying the same space and time (i.e. a population). Given its importance, it is surprising that detailed population genetic data remain lacking for numerous organisms vital to many ecosystems. For example, the coral reef ecosystem is well recognized for its high biodiversity and productivity, numerous ecological services and significant economic and societal values (Moberg & Folke 1999; Cinner 2014). Many coral reef invertebrates form symbiotic relationships with single‐celled dinoflagellates within the genus Symbiodinium Freudenthal (Taylor 1974), with hosts providing these (typically) intracellular symbionts with by‐products of metabolism and in turn receiving photosynthetically fixed carbon capable of meeting hosts’ respiratory demands (Falkowski et al. 1984; Muscatine et al. 1984). Unfortunately, the health and integrity of the coral reef ecosystem has been significantly and negatively impacted by onslaughts like anthropogenic eutrophication and disease in addition to global climate change, with increased incidences of ‘bleaching’ events (characterized as the loss of photosynthetic pigments from the algal cell or massive reduction of Symbiodinium density from hosts’ tissue) and host mortality leading to staggering declines in geographic coverage (Bruno & Selig 2007) that have raised questions on the viability of this ecosystem as we know it (Bellwood et al. 2004; Parmesan 2006). One avenue towards anticipating the future of the coral reef ecosystem is by developing a broader and deeper understanding of the current genotypic diversity encompassed within and between populations of their keystone species, the scleractinian corals and dinoflagellate symbionts, as they potentially possess functional variation (either singularly or in combination) that may come under selection due to the ongoing and rapid environmental changes they are experiencing. However, such studies, especially for members of the genus Symbiodinium, are sparse. In this issue, Baums et al. (2014) provide a significant contribution by documenting the range‐wide population genetics of Symbiodinium ‘fitti’ (Fig. 1 ) in the context of complementary data from its host, the endangered Caribbean elkhorn coral Acropora palmata (Fig. 1 ). Notable results of this study include a single S. ‘fitti’ genotype typically dominates an individual A. palmata colony both spatially and temporally, gene flow among coral host populations is a magnitude higher to that of its symbiont populations, and the partners possess disparate patterns of genetic differentiation across the Greater Caribbean. The implications of such findings are discussed herein. 相似文献
8.
Emily J. Howells Andrew G. Bauman Grace O. Vaughan Benjamin C. C. Hume Christian R. Voolstra John A. Burt 《Molecular ecology》2020,29(5):899-911
Reef‐building corals are at risk of extinction from ocean warming. While some corals can enhance their thermal limits by associating with dinoflagellate photosymbionts of superior stress tolerance, the extent to which symbiont communities will reorganize under increased warming pressure remains unclear. Here we show that corals in the hottest reefs in the world in the Persian Gulf maintain associations with the same symbionts across 1.5 years despite extreme seasonal warming and acute heat stress (≥35°C). Persian Gulf corals predominantly associated with Cladocopium (clade C) and most also hosted Symbiodinium (clade A) and/or Durusdinium (clade D). This is in contrast to the neighbouring and milder Oman Sea, where corals associated with Durusdinium and only a minority hosted background levels of Cladocopium. During acute heat stress, the higher prevalence of Symbiodinium and Durusdinium in bleached versus nonbleached Persian Gulf corals indicates that genotypes of these background genera did not confer bleaching resistance. Within symbiont genera, the majority of ITS2 rDNA type profiles were unique to their respective coral species, confirming the existence of host‐specific symbiont lineages. Notably, further differentiation among Persian Gulf sites demonstrates that symbiont populations are either isolated or specialized over tens to hundreds of kilometres. Thermal tolerance across coral species was associated with the prevalence of a single ITS2 intragenomic sequence variant (C3gulf), definitive of the Cladocopium thermophilum group. The abundance of C3gulf was highest in bleaching‐resistant corals and at warmer sites, potentially indicating a specific symbiont genotype (or set of genotypes) that may play a role in thermal tolerance that warrants further investigation. Together, our findings indicate that co‐evolution of host–Symbiodiniaceae partnerships favours fidelity rather than flexibility in extreme environments and under future warming. 相似文献
9.
Claudia Pogoreutz Nils Rädecker Anny Cárdenas Astrid Gärdes Christian R. Voolstra Christian Wild 《Global Change Biology》2017,23(9):3838-3848
The disruption of the coral–algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral‐associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen‐fixing microbes in coral holobiont functioning and breakdown. 相似文献
10.
The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome 下载免费PDF全文
A. R. Mohamed V. Cumbo S. Harii C. Shinzato C. X. Chan M. A. Ragan D. G. Bourne B. L. Willis E. E. Ball N. Satoh D. J. Miller 《Molecular ecology》2016,25(13):3127-3141
11.
L. Thomas G. A. Kendrick W. J. Kennington Z. T. Richards M. Stat 《Molecular ecology》2014,23(12):3113-3126
Scleractinian corals have demonstrated the ability to shuffle their endosymbiotic dinoflagellate communities (genus Symbiodinium) during periods of acute environmental stress. This has been proposed as a mechanism of acclimation, which would be increased by a diverse and flexible association with Symbiodinium. Conventional molecular techniques used to evaluate Symbiodinium diversity are unable to identify genetic lineages present at background levels below 10%. Next generation sequencing (NGS) offers a solution to this problem and can resolve microorganism diversity at much finer scales. Here we apply NGS to evaluate Symbiodinium diversity and host specificity in Acropora corals from contrasting regions of Western Australia. The application of 454 pyrosequencing allowed for detection of Symbiodinium operational taxonomic units (OTUs) occurring at frequencies as low as 0.001%, offering a 10 000‐fold increase in sensitivity compared to traditional methods. All coral species from both regions were overwhelmingly dominated by a single clade C OTU (accounting for 98% of all recovered sequences). Only 8.5% of colonies associated with multiple clades (clades C and D, or C and G), suggesting a high level of symbiont specificity in Acropora assemblages in Western Australia. While only 40% of the OTUs were shared between regions, the dominance of a single OTU resulted in no significant difference in Symbiodinium community structure, demonstrating that the coral‐algal symbiosis can remain stable across more than 15° of latitude and a range of sea surface temperature profiles. This study validates the use of NGS platforms as tools for providing fine‐scale estimates of Symbiodinium diversity and can offer critical insight into the flexibility of the coral‐algal symbiosis. 相似文献
12.
Nicholas H. Wolff Peter J. Mumby Michelle Devlin Kenneth R. N. Anthony 《Global Change Biology》2018,24(5):1978-1991
Australia's Great Barrier Reef (GBR) is under pressure from a suite of stressors including cyclones, crown‐of‐thorns starfish (COTS), nutrients from river run‐off and warming events that drive mass coral bleaching. Two key questions are: how vulnerable will the GBR be to future environmental scenarios, and to what extent can local management actions lower vulnerability in the face of climate change? To address these questions, we use a simple empirical and mechanistic coral model to explore six scenarios that represent plausible combinations of climate change projections (from four Representative Concentration Pathways, RCPs), cyclones and local stressors. Projections (2017–2050) indicate significant potential for coral recovery in the near‐term, relative to current state, followed by climate‐driven decline. Under a scenario of unmitigated emissions (RCP8.5) and business‐as‐usual management of local stressors, mean coral cover on the GBR is predicted to recover over the next decade and then rapidly decline to only 3% by year 2050. In contrast, a scenario of strong carbon mitigation (RCP2.6) and improved water quality, predicts significant coral recovery over the next two decades, followed by a relatively modest climate‐driven decline that sustained coral cover above 26% by 2050. In an analysis of the impacts of cumulative stressors on coral cover relative to potential coral cover in the absence of such impacts, we found that GBR‐wide reef performance will decline 27%–74% depending on the scenario. Up to 66% of performance loss is attributable to local stressors. The potential for management to reduce vulnerability, measured here as the mean number of years coral cover can be kept above 30%, is spatially variable. Management strategies that alleviate cumulative impacts have the potential to reduce the vulnerability of some midshelf reefs in the central GBR by 83%, but only if combined with strong mitigation of carbon emissions. 相似文献
13.
Understanding levels of connectivity among scleractinian coral populations over a range of temporal and spatial scales is vital for managing tropical coral reef ecosystems. Here, we use multilocus microsatellite genotypes to assess the spatial genetic structure of two molecular operational taxonomic units (MOTUs, types α and β) of the widespread coral Pocillopora damicornis on the Great Barrier Reef (GBR) and infer the extent of connectivity on spatial scales spanning from local habitat types to latitudinal sectors of the GBR. We found high genetic similarities over large spatial scales spanning > 1000 km from the northern to the southern GBR, but also strong genetic differentiation at local scales in both MOTUs. The presence of a considerable number of first‐generation migrants within the populations sampled (12% and 27% for types α and β, respectively) suggests that genetic differentiation over small spatial scales is probably a consequence of stochastic recruitment from different genetic pools into recently opened up spaces on the reef, for example, following major disturbance events. We explain high genetic similarity among populations over hundreds of kilometres by long competency periods of brooded zooxanthellate larvae and multiple larval release events each year, combined with strong longshore currents typical along the GBR. The lack of genetic evidence for predominantly clonal reproduction in adult populations of P. damicornis, which broods predominantly asexually produced larvae, further undermines the paradigm that brooded larvae settle close to parent colonies shortly after the release. 相似文献
14.
Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence‐based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual‐based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self‐recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type β recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type β recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self‐recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds. 相似文献
15.
Robert van Woesik Peter Houk Adelle L. Isechal Jacques W. Idechong Steven Victor Yimnang Golbuu 《Ecology and evolution》2012,2(10):2474-2484
Coral bleaching and mortality are predicted to increase as climate change‐induced thermal‐stress events become more frequent. Although many studies document coral bleaching and mortality patterns, few studies have examined deviations from the expected positive relationships among thermal stress, coral bleaching, and coral mortality. This study examined the response of >30,000 coral colonies at 80 sites in Palau, during a regional thermal‐stress event in 2010. We sought to determine the spatial and taxonomic nature of bleaching and examine whether any habitats were comparatively resistant to thermal stress. Bleaching was most severe in the northwestern lagoon, in accordance with satellite‐derived maximum temperatures and anomalous temperatures above the long‐term averages. Pocillopora populations suffered the most extensive bleaching and the highest mortality. However, in the bays where temperatures were higher than elsewhere, bleaching and mortality were low. The coral‐community composition, constant exposure to high temperatures, and high vertical attenuation of light caused by naturally high suspended particulate matter buffered the corals in bays from the 2010 regional thermal‐stress event. Yet, nearshore reefs are also most vulnerable to land‐use change. Therefore, nearshore reefs should be given high conservation status because they provide refugia for coral populations as the oceans continue to warm. 相似文献
16.
From population connectivity to the art of striping Russian dolls: the lessons from Pocillopora corals 下载免费PDF全文
Pauline Gélin Cécile Fauvelot Lionel Bigot Joseph Baly Hélène Magalon 《Ecology and evolution》2018,8(2):1411-1426
Here, we examined the genetic variability in the coral genus Pocillopora, in particular within the Primary Species Hypothesis PSH09, identified by Gélin, Postaire, Fauvelot and Magalon (2017) using species delimitation methods [also named Pocillopora eydouxi/meandrina complex sensu, Schmidt‐Roach, Miller, Lundgren, & Andreakis (2014)] and which was found to split into three secondary species hypotheses (SSH09a, SSH09b, and SSH09c) according to assignment tests using multi‐locus genotypes (13 microsatellites). From a large sampling (2,507 colonies) achieved in three marine provinces [Western Indian Ocean (WIO), Tropical Southwestern Pacific (TSP), and Southeast Polynesia (SEP)], genetic structuring analysis conducted with two clustering analyses (Structure and DAPC) using 13 microsatellites revealed that SSH09a was restricted to the WIO while SSH09b and SSH09c were almost exclusively in the TSP and SEP. More surprisingly, each SSH split into two to three genetically differentiated clusters, found in sympatry at the reef scale, leading to a pattern of nested hierarchical levels (PSH > SSH > cluster), each level hiding highly differentiated genetic groups. Thus, rather than structured populations within a single species, these three SSHs, and even the eight clusters, likely represent distinct genetic lineages engaged in a speciation process or real species. The issue is now to understand which hierarchical level (SSH, cluster, or even below) corresponds to the species one. Several hypotheses are discussed on the processes leading to this pattern of mixed clusters in sympatry, evoking formation of reproductive barriers, either by allopatric speciation or habitat selection. 相似文献
17.
Matthieu Leray Alice L. Alldredge Joy Y. Yang Christopher P. Meyer Sally J. Holbrook Russell J. Schmitt Nancy Knowlton Andrew J. Brooks 《Molecular ecology》2019,28(10):2694-2710
Theories involving niche diversification to explain high levels of tropical diversity propose that species are more likely to co‐occur if they partition at least one dimension of their ecological niche space. Yet, numerous species appear to have widely overlapping niches based upon broad categorizations of resource use or functional traits. In particular, the extent to which food partitioning contributes to species coexistence in hyperdiverse tropical ecosystems remains unresolved. Here, we use a molecular approach to investigate inter‐ and intraspecific dietary partitioning between two species of damselfish (Dascyllus flavicaudus, Chromis viridis) that commonly co‐occur in branching corals. Species‐level identification of their diverse zooplankton prey revealed significant differences in diet composition between species despite their seemingly similar feeding strategies. Dascyllus exhibited a more diverse diet than Chromis, whereas Chromis tended to select larger prey items. A large calanoid copepod, Labidocera sp., found in low density and higher in the water column during the day, explained more than 19% of the variation in dietary composition between Dascyllus and Chromis. Dascyllus did not significantly shift its diet in the presence of Chromis, which suggests intrinsic differences in feeding behaviour. Finally, prey composition significantly shifted during the ontogeny of both fish species. Our findings show that levels of dietary specialization among coral reef associated species have likely been underestimated, and they underscore the importance of characterizing trophic webs in tropical ecosystems at higher levels of taxonomic resolution. They also suggest that niche redundancy may not be as common as previously thought. 相似文献
18.
19.
20.
Daniel J. Thornhill Yu Xiang D. Tye Pettay Min Zhong Scott R. Santos 《Molecular ecology》2013,22(17):4499-4515
The Aiptasia–Symbiodinium symbiosis is a promising model for experimental studies of cnidarian–dinoflagellate associations, yet relatively little is known regarding the genetic diversity of either symbiotic partner. To address this, we collected Aiptasia from 16 localities throughout the world and examined the genetic diversity of both anemones and their endosymbionts. Based on newly developed SCAR markers, Aiptasia consisted of two genetically distinct populations: one Aiptasia lineage from Florida and a second network of Aiptasia genotypes found at other localities. These populations did not conform to the distributions of described Aiptasia species, suggesting that taxonomic re‐evaluation is needed in the light of molecular genetics. Associations with Symbiodinium further demonstrated the distinctions among Aiptasia populations. According to 18S RFLP, ITS2‐DGGE and microsatellite flanker region sequencing, Florida anemones engaged in diverse symbioses predominantly with members of Symbiodinium Clades A and B, but also C, whereas anemones from elsewhere harboured only S. minutum within Clade B. Symbiodinium minutum apparently does not form a stable symbiosis with other hosts, which implies a highly specific symbiosis. Fine‐scale differences among S. minutum populations were quantified using six microsatellite loci. Populations of S. minutum had low genotypic diversity and high clonality (R = 0.14). Furthermore, minimal population structure was observed among regions and ocean basins, due to allele and genotype sharing. The lack of genetic structure and low genotypic diversity suggest recent vectoring of Aiptasia and S. minutum across localities. This first ever molecular‐genetic study of a globally distributed cnidarian and its Symbiodinium assemblages reveals host–symbiont specificity and widely distributed populations in an important model system. 相似文献