首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents an extension of the joint modeling strategy for the case of multiple longitudinal outcomes and repeated infections of different types over time, motivated by postkidney transplantation data. Our model comprises two parts linked by shared latent terms. On the one hand is a multivariate mixed linear model with random effects, where a low‐rank thin‐plate spline function is incorporated to collect the nonlinear behavior of the different profiles over time. On the other hand is an infection‐specific Cox model, where the dependence between different types of infections and the related times of infection is through a random effect associated with each infection type to catch the within dependence and a shared frailty parameter to capture the dependence between infection types. We implemented the parameterization used in joint models which uses the fitted longitudinal measurements as time‐dependent covariates in a relative risk model. Our proposed model was implemented in OpenBUGS using the MCMC approach.  相似文献   

2.
Dunson DB  Chen Z  Harry J 《Biometrics》2003,59(3):521-530
In applications that involve clustered data, such as longitudinal studies and developmental toxicity experiments, the number of subunits within a cluster is often correlated with outcomes measured on the individual subunits. Analyses that ignore this dependency can produce biased inferences. This article proposes a Bayesian framework for jointly modeling cluster size and multiple categorical and continuous outcomes measured on each subunit. We use a continuation ratio probit model for the cluster size and underlying normal regression models for each of the subunit-specific outcomes. Dependency between cluster size and the different outcomes is accommodated through a latent variable structure. The form of the model facilitates posterior computation via a simple and computationally efficient Gibbs sampler. The approach is illustrated with an application to developmental toxicity data, and other applications, to joint modeling of longitudinal and event time data, are discussed.  相似文献   

3.
This paper concerns with the analysis of item response data, which are usually measured on a rating scale and are therefore ordinal. These study items tended to be highly inter‐correlated. Rasch models, which convert ordinal categorical scales into linear measurements, are widely used in ordinal data analysis. In this paper, we improve the current methodology in order to incorporate inter‐item correlations. We have advocated the latent variable approach for this purpose, in combination with generalized estimating equations to estimate the Rasch model parameters. The data on a study of families of lung cancer patients demonstrate the utility of our methods.  相似文献   

4.
Coull BA  Agresti A 《Biometrics》2000,56(1):73-80
The multivariate binomial logit-normal distribution is a mixture distribution for which, (i) conditional on a set of success probabilities and sample size indices, a vector of counts is independent binomial variates, and (ii) the vector of logits of the parameters has a multivariate normal distribution. We use this distribution to model multivariate binomial-type responses using a vector of random effects. The vector of logits of parameters has a mean that is a linear function of explanatory variables and has an unspecified or partly specified covariance matrix. The model generalizes and provides greater flexibility than the univariate model that uses a normal random effect to account for positive correlations in clustered data. The multivariate model is useful when different elements of the response vector refer to different characteristics, each of which may naturally have its own random effect. It is also useful for repeated binary measurement of a single response when there is a nonexchangeable association structure, such as one often expects with longitudinal data or when negative association exists for at least one pair of responses. We apply the model to an influenza study with repeated responses in which some pairs are negatively associated and to a developmental toxicity study with continuation-ratio logits applied to an ordinal response with clustered observations.  相似文献   

5.
Miglioretti DL 《Biometrics》2003,59(3):710-720
Health status is a complex outcome, often characterized by multiple measures. When assessing changes in health status over time, multiple measures are typically collected longitudinally. Analytic challenges posed by these multivariate longitudinal data are further complicated when the outcomes are combinations of continuous, categorical, and count data. To address these challenges, we propose a fully Bayesian latent transition regression approach for jointly analyzing a mixture of longitudinal outcomes from any distribution. Health status is assumed to be a categorical latent variable, and the multiple outcomes are treated as surrogate measures of the latent health state, observed with error. Using this approach, both baseline latent health state prevalences and the probabilities of transitioning between the health states over time are modeled as functions of covariates. The observed outcomes are related to the latent health states through regression models that include subject-specific effects to account for residual correlation among repeated measures over time, and covariate effects to account for differential measurement of the latent health states. We illustrate our approach with data from a longitudinal study of back pain.  相似文献   

6.
Association Models for Clustered Data with Binary and Continuous Responses   总被引:1,自引:0,他引:1  
Summary .  We consider analysis of clustered data with mixed bivariate responses, i.e., where each member of the cluster has a binary and a continuous outcome. We propose a new bivariate random effects model that induces associations among the binary outcomes within a cluster, among the continuous outcomes within a cluster, between a binary outcome and a continuous outcome from different subjects within a cluster, as well as the direct association between the binary and continuous outcomes within the same subject. For the ease of interpretations of the regression effects, the marginal model of the binary response probability integrated over the random effects preserves the logistic form and the marginal expectation of the continuous response preserves the linear form. We implement maximum likelihood estimation of our model parameters using standard software such as PROC NLMIXED of SAS . Our simulation study demonstrates the robustness of our method with respect to the misspecification of the regression model as well as the random effects model. We illustrate our methodology by analyzing a developmental toxicity study of ethylene glycol in mice.  相似文献   

7.
Summary Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social science and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this article, we consider multilevel latent class models, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the expectation‐maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less‐efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the obsessive compulsive disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for LCA of multilevel data.  相似文献   

8.
Finite mixture modeling with mixture outcomes using the EM algorithm   总被引:10,自引:0,他引:10  
Muthén B  Shedden K 《Biometrics》1999,55(2):463-469
This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables influence a second set of observed variables. The research is motivated by a repeated measurement study using a random coefficient model to assess the influence of latent growth trajectory class membership on the probability of a binary disease outcome. More generally, this model can be seen as a combination of latent class modeling and conventional mixture modeling. The EM algorithm is used for estimation. As an illustration, a random-coefficient growth model for the prediction of alcohol dependence from three latent classes of heavy alcohol use trajectories among young adults is analyzed.  相似文献   

9.
Liu LC  Hedeker D 《Biometrics》2006,62(1):261-268
A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model.  相似文献   

10.
A Bayesian design is proposed for randomized phase II clinical trials that screen multiple experimental treatments compared to an active control based on ordinal categorical toxicity and response. The underlying model and design account for patient heterogeneity characterized by ordered prognostic subgroups. All decision criteria are subgroup specific, including interim rules for dropping unsafe or ineffective treatments, and criteria for selecting optimal treatments at the end of the trial. The design requires an elicited utility function of the two outcomes that varies with the subgroups. Final treatment selections are based on posterior mean utilities. The methodology is illustrated by a trial of targeted agents for metastatic renal cancer, which motivated the design methodology. In the context of this application, the design is evaluated by computer simulation, including comparison to three designs that conduct separate trials within subgroups, or conduct one trial while ignoring subgroups, or base treatment selection on estimated response rates while ignoring toxicity.  相似文献   

11.
Li Y  Lin X 《Biometrics》2003,59(1):25-35
In the analysis of clustered categorical data, it is of common interest to test for the correlation within clusters, and the heterogeneity across different clusters. We address this problem by proposing a class of score tests for the null hypothesis that the variance components are zero in random effects models, for clustered nominal and ordinal categorical responses. We extend the results to accommodate clustered censored discrete time-to-event data. We next consider such tests in the situation where covariates are measured with errors. We propose using the SIMEX method to construct the score tests for the null hypothesis that the variance components are zero. Key advantages of the proposed score tests are that they can be easily implemented by fitting standard polytomous regression models and discrete failure time models, and that they are robust in the sense that no assumptions need to be made regarding the distributions of the random effects and the unobserved covariates. The asymptotic properties of the proposed tests are studied. We illustrate these tests by analyzing two data sets and evaluate their performance with simulations.  相似文献   

12.
Variance-component methods are popular and flexible analytic tools for elucidating the genetic mechanisms of complex quantitative traits from pedigree data. However, variance-component methods typically assume that the trait of interest follows a multivariate normal distribution within a pedigree. Studies have shown that violation of this normality assumption can lead to biased parameter estimates and inflations in type-I error. This limits the application of variance-component methods to more general trait outcomes, whether continuous or categorical in nature. In this paper, we develop and apply a general variance-component framework for pedigree analysis of continuous and categorical outcomes. We develop appropriate models using generalized-linear mixed model theory and fit such models using approximate maximum-likelihood procedures. Using our proposed method, we demonstrate that one can perform variance-component pedigree analysis on outcomes that follow any exponential-family distribution. Additionally, we also show how one can modify the method to perform pedigree analysis of ordinal outcomes. We also discuss extensions of our variance-component framework to accommodate pedigrees ascertained based on trait outcome. We demonstrate the feasibility of our method using both simulated data and data from a genetic study of ovarian insufficiency.  相似文献   

13.
Association mapping can be a powerful tool for detecting quantitative trait loci (QTLs) without requiring line-crossing experiments. We previously proposed a Bayesian approach for simultaneously mapping multiple QTLs by a regression method that directly incorporates estimates of the population structure. In the present study, we extended our method to analyze ordinal and censored traits, since both types of traits are common in the evaluation of germplasm collections. Ordinal-probit and tobit models were employed to analyze ordinal and censored traits, respectively. In both models, we postulated the existence of a latent continuous variable associated with the observable data, and we used a Markov-chain Monte Carlo algorithm to sample the latent variable and determine the model parameters. We evaluated the efficiency of our approach by using simulated- and real-trait analyses of a rice germplasm collection. Simulation analyses based on real marker data showed that our models could reduce both false-positive and false-negative rates in detecting QTLs to reasonable levels. Simulation analyses based on highly polymorphic marker data, which were generated by coalescent simulations, showed that our models could be applied to genotype data based on highly polymorphic marker systems, like simple sequence repeats. For the real traits, we analyzed heading date as a censored trait and amylose content and the shape of milled rice grains as ordinal traits. We found significant markers that may be linked to previously reported QTLs. Our approach will be useful for whole-genome association mapping of ordinal and censored traits in rice germplasm collections.  相似文献   

14.
In biomedical or public health research, it is common for both survival time and longitudinal categorical outcomes to be collected for a subject, along with the subject’s characteristics or risk factors. Investigators are often interested in finding important variables for predicting both survival time and longitudinal outcomes which could be correlated within the same subject. Existing approaches for such joint analyses deal with continuous longitudinal outcomes. New statistical methods need to be developed for categorical longitudinal outcomes. We propose to simultaneously model the survival time with a stratified Cox proportional hazards model and the longitudinal categorical outcomes with a generalized linear mixed model. Random effects are introduced to account for the dependence between survival time and longitudinal outcomes due to unobserved factors. The Expectation–Maximization (EM) algorithm is used to derive the point estimates for the model parameters, and the observed information matrix is adopted to estimate their asymptotic variances. Asymptotic properties for our proposed maximum likelihood estimators are established using the theory of empirical processes. The method is demonstrated to perform well in finite samples via simulation studies. We illustrate our approach with data from the Carolina Head and Neck Cancer Study (CHANCE) and compare the results based on our simultaneous analysis and the separately conducted analyses using the generalized linear mixed model and the Cox proportional hazards model. Our proposed method identifies more predictors than by separate analyses.  相似文献   

15.
Lin H  Guo Z  Peduzzi PN  Gill TM  Allore HG 《Biometrics》2008,64(4):1032-1042
SUMMARY: We propose a general multistate transition model. The model is developed for the analysis of repeated episodes of multiple states representing different health status. Transitions among multiple states are modeled jointly using multivariate latent traits with factor loadings. Different types of state transition are described by flexible transition-specific nonparametric baseline intensities. A state-specific latent trait is used to capture individual tendency of the sojourn in the state that cannot be explained by covariates and to account for correlation among repeated sojourns in the same state within an individual. Correlation among sojourns across different states within an individual is accounted for by the correlation between the different latent traits. The factor loadings for a latent trait accommodate the dependence of the transitions to different competing states from a same state. We obtain the semiparametric maximum likelihood estimates through an expectation-maximization (EM) algorithm. The method is illustrated by studying repeated transitions between independence and disability states of activities of daily living (ADL) with death as an absorbing state in a longitudinal aging study. The performance of the estimation procedure is assessed by simulation studies.  相似文献   

16.
We discuss inference for data with repeated measurements at multiple levels. The motivating example is data with blood counts from cancer patients undergoing multiple cycles of chemotherapy, with days nested within cycles. Some inference questions relate to repeated measurements over days within cycle, while other questions are concerned with the dependence across cycles. When the desired inference relates to both levels of repetition, it becomes important to reflect the data structure in the model. We develop a semiparametric Bayesian modeling approach, restricting attention to two levels of repeated measurements. For the top-level longitudinal sampling model we use random effects to introduce the desired dependence across repeated measurements. We use a nonparametric prior for the random effects distribution. Inference about dependence across second-level repetition is implemented by the clustering implied in the nonparametric random effects model. Practical use of the model requires that the posterior distribution on the latent random effects be reasonably precise.  相似文献   

17.
Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent class model to facilitate analysis of high-dimensional ordinal data. By stabilizing maximum likelihood estimation, we are able to fit an ordinal latent class model that would otherwise not be identifiable without application of strict constraints. We illustrate our methodology in a study of schwannoma, a peripheral nerve sheath tumor, that included 3 clinical subtypes and 23 ordinal histological measures.  相似文献   

18.
Summary Colorectal cancer is the second leading cause of cancer related deaths in the United States, with more than 130,000 new cases of colorectal cancer diagnosed each year. Clinical studies have shown that genetic alterations lead to different responses to the same treatment, despite the morphologic similarities of tumors. A molecular test prior to treatment could help in determining an optimal treatment for a patient with regard to both toxicity and efficacy. This article introduces a statistical method appropriate for predicting and comparing multiple endpoints given different treatment options and molecular profiles of an individual. A latent variable‐based multivariate regression model with structured variance covariance matrix is considered here. The latent variables account for the correlated nature of multiple endpoints and accommodate the fact that some clinical endpoints are categorical variables and others are censored variables. The mixture normal hierarchical structure admits a natural variable selection rule. Inference was conducted using the posterior distribution sampling Markov chain Monte Carlo method. We analyzed the finite‐sample properties of the proposed method using simulation studies. The application to the advanced colorectal cancer study revealed associations between multiple endpoints and particular biomarkers, demonstrating the potential of individualizing treatment based on genetic profiles.  相似文献   

19.
In this paper, we develop new regression models for the analysis of scored ordinal data (i.e. ordinal outcomes where the categories are assigned numeric values). The novel feature of these models is that they enable one to capture and identify nonlinear aspects of the relationship between an ordinal clinical measurement (used for disease diagnosis) and risk factors. These nonlinearities may be useful in generating hypotheses about the risk factor's role in the etiologic process as well as suggesting how to design future studies of the risk factor. We apply our model to study the effects of race, gender, and family history on alcohol dependence among a cohort of lifetime drinkers from the 1992 National Longitudinal Alcohol Epidemiologic Survey.  相似文献   

20.
Biomedical studies often collect multivariate event time data from multiple clusters (either subjects or groups) within each of which event times for individuals are correlated and the correlation may vary in different classes. In such survival analyses, heterogeneity among clusters for shared and specific classes can be accommodated by incorporating parametric frailty terms into the model. In this article, we propose a Bayesian approach to relax the parametric distribution assumption for shared and specific‐class frailties by using a Dirichlet process prior while also allowing for the uncertainty of heterogeneity for different classes. Multiple cluster‐specific frailty selections rely on variable selection‐type mixture priors by applying mixtures of point masses at zero and inverse gamma distributions to the variance of log frailties. This selection allows frailties with zero variance to effectively drop out of the model. A reparameterization of log‐frailty terms is performed to reduce the potential bias of fixed effects due to variation of the random distribution and dependence among the parameters resulting in easy interpretation and faster Markov chain Monte Carlo convergence. Simulated data examples and an application to a lung cancer clinical trial are used for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号