首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female mate choice can result in direct benefits to the female or indirect benefits through her offspring. Females can increase their fitness by mating with males whose genes encode increased survivorship and reproductive output. Alternatively, male investment in enhanced mating success may come at the cost of reduced investment in offspring fitness. Here, we measure male mating success in a mating arena that allows for male–male, male–female and female–female interactions in Drosophila melanogaster. We then use isofemale line population measurements to correlate male mating success with sperm competitive ability, the number of offspring produced and the indirect benefits of the number of offspring produced by daughters and sons. We find that males from populations that gain more copulations do not increase female fitness through increased offspring production, nor do these males fare better in sperm competition. Instead, we find that these populations have a reduced reproductive output of sons, indicating a potential reproductive trade‐off between male mating success and offspring quality.  相似文献   

2.
The generation of reproductive incompatibility between groups requires a rare genotype with low compatibility to increase in frequency. We tested the hypothesis that sexual conflict driven by the risk of polyspermy can generate compatibility groups in gamete recognition proteins (GRPs) in the sea urchin Mesocentrotus franciscanus. We examined variation in the sperm (bindin) and egg (EBR1) GRPs, how this variation influences fertilization success and how allele frequencies shift in these GRPs over time. The EBR1 gene is a large, 4595 amino acid protein made up of 27 thrombospondin type 1 domain (TSP) and 20 C1s/C1r, uEGF and bone morphogenic protein subdomain (CUB) repeats. Two TSP and two CUB repeats each demonstrate two common non‐synonymous haplotypes (alleles). Sperm bindin and one of these EBR1 repeats (TSP8) shift allele frequencies from one common to two common types over an approximate 200 year interval associated with the removal of predatory sea otters and rising sea urchin abundances; the egg receptor shifts first, followed by the sperm ligand. Laboratory crosses indicate that the historically common sperm and egg gamete recognition proteins have high compatibility as do the new common proteins, with mismatches having lower compatibility. This process of creating compatibility groups sets the stage for reproductive isolation and speciation.  相似文献   

3.
In Drosophila, long sperm are favoured in sperm competition based on the length of the female's primary sperm storage organ, the seminal receptacle (SR). This sperm–SR interaction, together with a genetic correlation between the traits, suggests that the coevolution of exaggerated sperm and SR lengths may be driven by Fisherian runaway selection. Here, we explore the costs and benefits of long sperm and SR genotypes, both in the sex that carries them and in the sex that does not. We measured male and female fitness in inbred lines of Drosophila melanogaster derived from four populations previously selected for long sperm, short sperm, long SRs or short SRs. We specifically asked: What are the costs and benefits of long sperm in males and long SRs in females? Furthermore, do genotypes that generate long sperm in males or long SRs in females impose a fitness cost on the opposite sex? Answers to these questions will address whether long sperm are an honest indicator of male fitness, male post‐copulatory success is associated with male precopulatory success, female choice benefits females or is costly, and intragenomic conflict could influence evolution of these traits. We found that both sexes have increased longevity in long sperm and long SR genotypes. Males, but not females, from long SR lines had higher fecundity. Our results suggest that sperm–SR coevolution is facilitated by both increased viability and indirect benefits of long sperm and SRs in both sexes.  相似文献   

4.
The role of male body size in postmating sexual selection wasexplored in a semiaquatic insect, the water strider Gerris lateralis.To separate effects of male size per se from those due to numericsperm competition, male recovery period (shown here to be proportionalto ejaculate size) was manipulated independently of body sizein a factorial experiment where virgin females were mated firstwith sterile males and then with focal males. Both relativemale fertilization success and female reproductive rate were measured.The number of sperm transferred increased with male recoveryperiod, an effect that was mediated by longer copulation duration,but there were no effects of body size on ejaculate size. Neithermale size nor recovery period had any significant direct effectson male fertilization success. However, copulation durationinfluenced relative fertilization success, suggesting that malesable to transfer more sperm also achieved higher fertilizationsuccess. Females exercised cryptic female choice by modulatingtheir reproductive rate in a manner favoring large males andmales that were successful in terms of achieving high relativefertilization success. Thus, successful males gained a twofoldadvantage in postmating sexual selection. This study has important implicationsfor previous estimates of sexual selection in this group of insectsbecause pre- and postmating sexual selection will be antagonisticdue to limitations in male sperm production: males mating frequently(high mating success) will on average transfer fewer sperm ineach mating and will hence tend to fertilize fewer eggs permating (low fertilization success).  相似文献   

5.
Insecticide resistance enhances male reproductive success in a beetle   总被引:5,自引:0,他引:5  
Abstract.— Malathion-specific resistance in the red flour beetle, Tribolium castaneum , is widespread and stable in natural populations even in the absence of pesticide exposure. To understand this stability, both resistant and susceptible males were placed in competition for susceptible female fertilization. Females were then isolated and their progeny was tested for malathion susceptibility. Male reproductive success was estimated for populations originating from different geographic areas and for isogenic strains. In most cases, resistant males had a greater reproductive success rate than susceptibles. The results suggest that male reproductive success is not traded against the selection for malathion resistance, even resistant individuals are at an advantage for this fitness trait. This absence of fitness cost may be the result of postselection of (1) modifier gene which ameliorate the fitness of resistant individuals or (2) nondeleterious resistance gene. Resistant phenotype superiority could be due to increased male mating success, improved ability of resistant males in sperm competition, female mate choice, and/or cryptic female choice of resistance gene(s). The effect of male phenotypic frequency on male reproductive success was also examined. We observed that male fertilization success is frequency dependent and inversely related to their frequency. However, this "rare male" advantage did not counteract the superiority of the resistant males.  相似文献   

6.
Sexual selection operates through consecutive episodes of selection that ultimately contribute to the observed variance in reproductive success between individuals. Understanding the relative importance of these episodes is challenging, particularly because the relevant postcopulatory fitness components are often difficult to assess. Here, we investigate different episodes of sexual selection on the male sex function, by assessing how (precopulatory) mating success, and (postcopulatory) sperm‐transfer efficiency and sperm‐fertilizing efficiency contribute to male reproductive success. Specifically, we used a transgenic line of the transparent flatworm, Macrostomum lignano, which expresses green fluorescent protein (GFP) in all cell types, including sperm cells, enabling in vivo sperm tracking and paternity analysis. We found that a large proportion of variance in male reproductive success arose from the postcopulatory episodes. Moreover, we also quantified selection differentials on 10 morphological traits. Testis size and seminal vesicle size showed significant positive selection differentials, which were mainly due to selection on sperm‐transfer efficiency. Overall, our results demonstrate that male reproductive success in M. lignano is not primarily limited by the number of matings achieved, but rather by the ability to convert matings into successful fertilizations, which is facilitated by producing many sperm.  相似文献   

7.
Deleterious mutations can accumulate in the germline with age, decreasing the genetic quality of sperm and imposing a cost on female fitness. If these mutations also affect sperm competition ability or sperm production, then females will benefit from polyandry as it incites sperm competition and, consequently, minimizes the mutational load in the offspring. We tested this hypothesis in the guppy (Poecilia reticulata), a species characterized by polyandry and intense sperm competition, by investigating whether age affects post‐copulatory male traits and sperm competition success. Females did not discriminate between old and young males in a mate choice experiment. While old males produced longer and slower sperm with larger reserves of strippable sperm, compared to young males, artificial insemination did not reveal any effect of age on sperm competition success. Altogether, these results do not support the hypothesis that polyandry evolved in response to costs associated with mating with old males in the guppy.  相似文献   

8.
An evolutionary conflict often exists between the sexes in regard to female mating patterns. Females can benefit from polyandry, whereas males mating with polyandrous females lose reproductive opportunities because of sperm competition. Where this conflict occurs, the evolution of mechanisms whereby males can control female remating, often at a fitness cost to the female, are expected to evolve. The fitness cost to the female will be increased in systems where a few high status males monopolise mating opportunities and thus have limited sperm supplies. Here we show that in the cockroach Nauphoeta cinerea, a species where males enforce female monogamy in the first reproductive cycle, males that have become sperm depleted continue to be able to manipulate female remating behaviour. Although the manipulation severely decreases fecundity in females mated to sperm-depleted males, males benefit, increasing their relative fitness by preventing other males from reproducing. Our results suggest that there is selection on maintaining the mechanism of manipulation rather than maintaining sperm numbers. Taken with previous research on sexual conflict in N. cinerea, this study suggests that the causes and consequences of sexual conflict are complex and can change across the life history of an individual.  相似文献   

9.
Sexes' roles in post‐copulatory processes have important effects on individual fitness and are promising to study in species showing complex mating behaviours. In the spider Schizocosa malitiosa, males perform two different copulatory patterns, pattern 1 includes 80% of total pedipalp insertions and pattern 2 includes 20%. Both patterns produce similar number of offspring, but pattern 1 induces higher female reluctance to remating than pattern 2. We hypothesised that the complex copulatory patterns are linked to post‐copulatory sexual selection, affecting males' sperm transfer and the resulting sperm storage by females. First, we examined amounts of sperm in males and live females from uninterrupted (pattern 1 + 2) and interrupted matings (pattern 1, pattern 2). Second, in order to disentangle male and female actions, we induced males to mate with dead females and examined amounts of sperm. Males transfer in total 71% of the sperm available in their pedipalps, being higher but not significant in pattern 1 than in pattern 2. Females drastically reduced the amount of sperm stored in their spermathecae and such control is stronger in pattern 1 compared to pattern 2 matings. We propose that cryptic female control is a main factor driving males to strengthen sperm transfer. Active female reduction in ejaculate most probably diminished her reluctance to remate.  相似文献   

10.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

11.
Understanding the evolution of polyandry (mating with multiple males) is a major issue in the study of animal breeding systems. We examined the adaptive significance of polyandry in Drosophila melanogaster, a species with well-documented costs of mating in which males generally cannot force copulations. We found no direct fitness advantages of polyandry. Females that mated with multiple males had no greater mean fitness and no different variance in fitness than females that mated repeatedly with the same male. Subcomponents of reproductive success, including fecundity, egg hatch rate, larval viability, and larval development time, also did not differ between polyandrous and monogamous females. Polyandry had no affect on progeny sex ratios, suggesting that polyandry does not function against costly sex-ratio distorters. We also found no evidence that polyandry functions to favor the paternity of males successful in precopulatory sexual selection. Experimentally controlled opportunities for precopulatory sexual selection had no effect on postcopulatory sperm precedence. Although these results were generally negative, they are supported with substantial statistical power and they help narrow the list of evolutionary explanations for polyandry in an important model species.  相似文献   

12.
POLYANDRY INCREASES OFFSPRING FECUNDITY IN THE BULB MITE   总被引:3,自引:0,他引:3  
Abstract The common occurrence of polyandry continues to puzzle evolutionary biologists, as female reproductive success is thought to be limited mostly by her fecundity. Here we test whether females of the bulb mite, a species in which the females are highly promiscuous, benefit from polyandry in terms of increased fitness of their progeny. Females were given opportunity to mate with either one or six males, but the experiment was designed to allow the same number of matings per female in both groups, that is, irrespective of the number of males. We found that daughters of females mated to six males had significantly higher fecundity than daughters of females mated to one male, whereas other fitness components of progeny (male virility and longevity of both sexes) were not affected. These findings appear to support hypotheses proposing that multi-male mating enables females to exercise postcopulatory mate-choice (direct or indirect, via sperm competition) and thus accrue genetic benefits.  相似文献   

13.
Enzyme polymorphism in phosphogluconate dehydrogenase (Pgdh) is a striking example of single gene polymorphism involved in sexual conflict in bulb mite Rhizoglyphus robini. Males homozygous for the S Pgdh allele were shown to achieve higher reproductive success than FF homozygous males, while negatively influencing fecundity of their female partners. Here, we investigate proximate mechanisms responsible for the increased reproductive success of SS males and find that the S allele is associated with shorter time until copulation, higher copulation frequency and increased sperm production. We also show that Pgdh alleles are probably codominant, with SS males gaining the highest reproductive success, FF males – the lowest – and FS‐heterozygous males taking an intermediate position in all fitness parameters differentiating males of different genotypes. Additionally, we confirm the negative effect that S‐bearing males impose on the fecundity of females they mate with, showing a clear pattern of interlocus sexual conflict. We discuss that this effect is probably associated with increased copulation frequency. Whereas, contrary to what we have predicted, the S allele does not cause increased general male mobility, we speculate that the S allele‐bearing males are more efficient in forcing copulation and/or detecting females.  相似文献   

14.
Sperm precedence, defined as nonrandom differential fertilizationsuccess among mating males, is an important postmating componentof sexual selection. This study examined the relationship betweenpremating and postmating components of sexual selection in malesof the flour beetle (Tribolium castanewn). Male olfactory attractivenessto females was positively correlated with a male's subsequentfertilization success: more attractive males achieved highersecond-male sperm precedence when allowed to mate with previouslyinseminated females. Attractive males may achieve compoundedgains in their reproductive success through enhanced matingopportunities as well as through greater fertilization success.Thus, the relationship between these reproductive fitness componentsmay augment differences in reproductive success among males.Female fecundity, estimated as the number of adult progeny produced,increased significantly with multiple malings. This result supportsincreased female reproductive success as a direct benefit ofmultiple mating in T. caslaneum and suggests that progeny productionis partially limited by sperm availability. Total progeny productionby doubly mated females remained constant at all levels of second-malesperm precedence. However, higher sperm precedence was associatedwith a decline in firstmale progeny and a concomitant increasein second-male progeny. This pattern of progeny production suggeststhat more attractive males may achieve higher fertilizationsuccess through a combination of displacement of previouslystored sperm, transfer of greater sperm quantities, or females'preferential use of sperm of attractive males for fertilizations.  相似文献   

15.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

16.
Females of many taxa often copulate with multiple males and incite sperm competition. On the premise that males of high genetic quality are more successful in sperm competition, it has been suggested that females may benefit from polyandry by accruing 'good genes' for their offspring. Laboratory studies have shown that multiple mating can increase female fitness through enhanced embryo viability, and have exposed how polyandry influences the evolution of the ejaculate. However, such studies often do not allow for both female mate choice and male-male competition to operate simultaneously. Here, I took house mice (Mus domesticus) from selection lines that had been evolving with (polygamous) and without (monogamous) sperm competition for 16 generations and, by placing them in free-ranging enclosures for 11 weeks, forced them to compete for access to resources and mates. Parentage analyses revealed that female reproductive success was not influenced by selection history, but there was a significant paternity bias towards males from the polygamous selection lines. Therefore, I show that female house mice benefit from polyandry by producing sons that achieve increased fitness in a semi-natural environment.  相似文献   

17.
Cryptic female choice in the yellow dung fly Scathophaga stercoraria (L.)   总被引:1,自引:0,他引:1  
Both female choice and male-male competition may take place during reproduction in many species. Female choice tends to be less obvious than male-male competition and consequently has received less attention from researchers. The opportunity for cryptic female choice arises after multiple insemination. Through postcopulatory processes, a female could alter the pattern of paternity among her offspring so that it does not directly reflect the different contributions of sperm made by her mates. To be able to determine if a female alters the relative sperm contributions of her mates, the behaviors and influences of the males must therefore be first taken into account. The interest of each male is to father all the offspring, and the interest of each female is to maximize paternal quality. Female yellow dung flies have complex internal reproductive tracts that may give them considerable control over the fertilization success of stored sperm from different males. In laboratory trials to date, the last male to mate has usually been most successful. In the present study, cryptic choice occurred in Scathophaga stercoraria and the pattern of choice was consistent with previously reported results. The fertilization success of a female's second mate (P2) was substantially larger if a female was kept at constant temperature and if the second male was genetically similar to her at the phosphoglucomutase (Pgm) locus. Females from the field normally have three spermathecae, but some have four. Lines were bred to have either three or four spermathecae. Flies from the different lines were crossed to generate females with similar genetic backgrounds that had either three or four spermathecae. P2 was significantly lower for high-quality females, that is, those that laid larger-than-average-clutches, with four spermathecae than for low-quality females with four spermathecae; female quality had no influence on P2 for females with three spermathecae. The results suggest that only large females may benefit from increased spermathecae number by being able to act against male interests. Females may only have three spermathecae, even though genetic variation for more is present, because selection for more spermathecae is weak.  相似文献   

18.
Following Darwin's original insights regarding sexual selection, studies of intrasexual competition have mainly focused on male competition for mates; by contrast, female reproductive competition has received less attention. Here, we review evidence that female mammals compete for both resources and mates in order to secure reproductive benefits. We describe how females compete for resources such as food, nest sites, and protection by means of dominance relationships, territoriality and inter‐group aggression, and by inhibiting the reproduction of other females. We also describe evidence that female mammals compete for mates and consider the ultimate causes of such behaviour, including competition for access to resources provided by mates, sperm limitation and prevention of future resource competition. Our review reveals female competition to be a potentially widespread and significant evolutionary selection pressure among mammals, particularly competition for resources among social species for which most evidence is currently available. We report that female competition is associated with many diverse adaptations, from overtly aggressive behaviour, weaponry, and conspicuous sexual signals to subtle and often complex social behaviour involving olfactory signalling, alliance formation, altruism and spite, and even cases where individuals appear to inhibit their own reproduction. Overall, despite some obvious parallels with male phenotypic traits favoured under sexual selection, it appears that fundamental differences in the reproductive strategies of the sexes (ultimately related to parental investment) commonly lead to contrasting competitive goals and adaptations. Because female adaptations for intrasexual competition are often less conspicuous than those of males, they are generally more challenging to study. In particular, since females often employ competitive strategies that directly influence not only the number but also the quality (survival and reproductive success) of their own offspring, as well as the relative reproductive success of others, a multigenerational view ideally is required to quantify the full extent of variation in female fitness resulting from intrasexual competition. Nonetheless, current evidence indicates that the reproductive success of female mammals can also be highly variable over shorter time scales, with significant reproductive skew related to competitive ability. Whether we choose to describe the outcome of female reproductive competition (competition for mates, for mates controlling resources, or for resources per se) as sexual selection depends on how sexual selection is defined. Considering sexual selection strictly as resulting from differential mating or fertilisation success, the role of female competition for the sperm of preferred (or competitively successful) males appears particularly worthy of more detailed investigation. Broader definitions of sexual selection have recently been proposed to encompass the impact on reproduction of competition for resources other than mates. Although the merits of such definitions are a matter of ongoing debate, our review highlights that understanding the evolutionary causes and consequences of female reproductive competition indeed requires a broader perspective than has traditionally been assumed. We conclude that future research in this field offers much exciting potential to address new and fundamentally important questions relating to social and mating‐system evolution.  相似文献   

19.
Reproduction among related individuals is generally maladaptive. Inbreeding imposes significant costs on individual reproductive success, and can decrease population fitness. Theory predicts that polyandrous females can avoid inbreeding by exploiting paternity‐biasing mechanisms that enable differential sperm ‘use’. Evidence of sperm selection is difficult to demonstrate because patterns of non‐random paternity can be generated by a variety of different mechanisms. Here, using in vitro fertilisation in mice, we provide evidence of sperm selection at the gametic level. We mixed the sperm of sibling and non‐sibling males, and observed a fertilisation bias towards the sperm of non‐sibling males. The number of motile sperm and sperm swimming performance did not differ between competitors among the replicate assays. Therefore, our result can only be ascribed to egg‐driven sperm selection against related sperm. We conclude that the expression or secretion of gametic proteins could provide the molecular basis for this mechanism of cryptic female choice.  相似文献   

20.
In polyandrous species, male reproductive success will at least partly be determined by males' success in sperm competition. To understand the potential for post‐mating sexual selection, it is therefore important to assess the extent of female remating. In the lekking moth Achroia grisella, male mating success is strongly determined by female choice based on the attractiveness of male ultrasonic songs. Although observations have indicated that some females will remate, only little is known about the level of sperm competition. In many species, females are more likely to remate if their first mating involved an already mated male than if the first male was virgin. Potentially, this is because mated males are less well able to provide an adequate sperm supply, nutrients, or substances inhibiting female remating. This phenomenon will effectively reduce the strength of pre‐copulatory sexual selection because attractive males with high mating success will be more susceptible to sperm competition. We therefore performed an experiment designed both to provide a more precise estimate of female remating probability and simultaneously to test the hypothesis that female remating is influenced by male mating history. Overall, approximately one of five females remated with a second male. Yet, although females mated to non‐virgin males were somewhat more prone to remate, the effect of male mating history was not significant. The results revealed, however, that heavier females were more likely to remate. Furthermore, we found that females' second copulations were longer, suggesting that, in accordance with theory, males may invest more sperm in situations with an elevated risk of sperm competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号