首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explored the feeding ecology of the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense (GenBank accession number=FR720082). Using several different types of microscopes and high-resolution video-microscopy, we investigated feeding behavior and types of prey species that G. shiwhaense feeds upon. Additionally, we measured its growth and ingestion rates on its optimal algal prey, the cryptophyte Teleaulax sp. and the dinoflagellate Amphidinium carterae, as a function of prey concentration. These rates were measured for other edible prey at single prey concentrations at which the growth and ingestion rates of G. shiwhaense were saturated. After anchoring the prey with a tow filament, G. shiwhaense fed using a peduncle, ingesting small algal species with equivalent spherical diameters (ESDs) of <13 μm. However, it did not feed on larger algal species that had ESDs≥13 μm or the small diatom Skeletonema costatum. The specific growth rates for G. shiwhaense feeding upon Teleaulax sp. and A. carterae increased rapidly with increasing mean prey concentration before saturating at concentrations of ca. 180-430 ng C/ml. The maximum specific growth rate of G. shiwhaense on Teleaulax sp. and A. carterae were 1.05 and 0.82/d, respectively. However, Heterosigma akashiwo did not support positive growth of G. shiwhaense. The maximum ingestion rates of G. shiwhaense on Teleaulax sp. and A. carterae were 0.35 and 0.54 ng C/grazer/d, respectively. The calculated grazing coefficients attributable to G. shiwhaense on co-occurring cryptophytes and Amphidinium spp. were 0.01-1.87/d and 0.08-2.60/d, respectively. Our results suggest that G. shiwhaense can have a considerable grazing impact on algal populations.  相似文献   

2.
To investigate heterotrophic protists grazing on Symbiodinium sp., we tested whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oblea rotundata, Oxyrrhis marina, and Polykrikos kofoidii and the ciliates Balanion sp. and Parastrombidinopsis sp. preyed on the free‐living dinoflagellate Symbiodinium sp. (clade E). We measured the growth and ingestion rates of O. marina and G. dominans on Symbiodinium sp. as a function of prey concentration. Furthermore, we compared the results to those obtained for other algal prey species. In addition, we measured the growth and ingestion rates of other predators at single prey concentrations at which these rates of O. marina and G. dominans were saturated. All predators tested in the present study, except Balanion sp., preyed on Symbiodinium sp. The specific growth rates of O. marina and G. dominans on Symbiodinium sp. increased rapidly with increasing mean prey concentration < ca. 740–815 ng C/ml (7,400–8,150 cells/ml), but became saturated at higher concentrations. The maximum growth rates of O. marina and G. dominans on Symbiodinium sp. (0.87 and 0.61/d) were much higher than those of G. moestrupii and P. kofoidii (0.11 and 0.04/d). Symbiodinium sp. did not support positive growth of G. spirale, O. rotundata, and Parastrombidinopsis sp. However, the maximum ingestion rates of P. kofoidii and Parastrombidinopsis sp. (6.7–10.0 ng C/predator/d) were much higher than those of O. marina and G. dominans on Symbiodinium sp. (1.9–2.1 ng C/predator/d). The results of the present study suggest that Symbiodinium sp. may increase or maintain the populations of some predators.  相似文献   

3.
To explore the feeding ecology of the Pfiesteria-like dinoflagellate (PLD) Luciella masanensis (GenBank Accession no. AM050344, previously Lucy), we investigated the feeding behavior and the kinds of prey species that L. masanensis fed on and determined its growth and ingestion rates of L. masanensis when it fed on the dinoflagellate Amphidinium carterae and an unidentified cryptophyte species (equivalent spherical diam., ESD=5.6 microm), which were the dominant phototrophic species when L. masanensis and similar small heterotrophic dinoflagellates were abundant in Masan Bay, Korea in 2005. Additionally, these parameters were also measured for L. masanensis fed on blood cells of the perch Lateolabrax japonicus and the raphidophyte Heterosigma akashiwo in the laboratory. Luciella masanensis fed on prey cells by using a peduncle after anchoring the prey with tow filament, and was able to feed on diverse prey such as cryptophytes, raphidophytes, diatoms, mixotrophic dinoflagellates, and the blood cells of fish and humans. Among the prey species tested in the present study, perch blood cells were observed to be the optimal prey for L. masanensis. Specific growth rates of L. masanensis feeding on perch blood cells, A. carterae, H. akashiwo, and the cryptophyte, either increased continuously or became saturated with increasing the mean prey concentration. The maximum specific growth rate of L. masanensis feeding on perch blood cells (1.46/day) was much greater than that of A. carterae (0.59/day), the cryptophyte (0.24/day), or H. akashiwo (0.20/day). The maximum ingestion rate of L. masanensis on perch blood cells (2.6 ng C/grazer/day) was also much higher than that of A. carterae (0.32 ng C/grazer/day), the cryptophyte (0.44 ng C/grazer/day), or H. akashiwo (0.16 ng C/grazer/day). The kinds of prey species which L. masanensis is able to feed on were the same as those of Pfiesteria piscicida, but very different from those of another PLD Stoeckeria algicida. However, the maximum growth and ingestion rates of L. masanensis on perch blood cells, A. carterae, H. akashiwo, and the cryptophyte were considerably lower than those of P. piscicida. Therefore, these three dinoflagellates may occupy different ecological niches in marine planktonic communities, even though they have a similar size and shape and the same feeding mechanisms.  相似文献   

4.
The mixotroph Yihiella yeosuensis is a small‐ and fast‐swimming dinoflagellate. To investigate its protistan predators, interactions between Y. yeosuensis and 11 heterotrophic protists were explored. No potential predators were able to feed on actively swimming Y. yeosuensis cells, which escaped via rapid jumps, whereas Aduncodinium glandula, Oxyrrhis marina, and Strombidinopsis sp. (approximately 150 μm in cell length) were able to feed on weakly swimming cells that could not jump. Furthermore, Gyrodinium dominans, Luciella masanensis, and Pfiesteria piscicida were able to feed on heat‐killed Yihiella cells, whereas Gyrodinium moestrupii, Noctiluca scintillans, Oblea rotunda, Polykrikos kofoidii, and Strombidium sp. (20 μm) did not feed on them. Thus, the jumping behavior of Y. yeosuensis might be primarily responsible for the observed lack of predation. With increasing Yihiella concentration, the growth rate of O. marina decreased, whereas that of Strombidinopsis did not change. However, with increasing Yihiella concentration (up to 530 ng C/ml), the ingestion rate of Strombidinopsis on Yihiella increased linearly. The highest ingestion rate was 24.1 ng C per predator per d. The low daily carbon acquisition from Yihiella relative to the body carbon content of Strombidinopsis might be responsible for its negligible growth. Thus, Y. yeosuensis might have an advantage over its competitors due to its low mortality rate.  相似文献   

5.
ABSTRACT. The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate‐like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension‐like furrow. The cingulum is as wide as 0.2–0.3 × cell length and displaced by 0.2–0.3 × cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4–19.3 and 6.1–16.0 μm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17–18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst–nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.  相似文献   

6.
We first reported here that the harmful alga Cochlodinium polykrikoides, which had been previously known as an autotrophic dinoflagellate, was a mixotrophic species. We investigated the kinds of prey species and the effects of the prey concentration on the growth and ingestion rates of C. polykrikoides when feeding on an unidentified cryptophyte species (Equivalent Spherical Diameter, ESD = 5.6 microm). We also calculated grazing coefficients by combining field data on abundances of C. polykrikoides and co-occurring cryptophytes with laboratory data on ingestion rates obtained in the present study. Cocholdinium polykrikoides fed on prey cells by engulfing the prey through the sulcus. Among the phytoplankton prey offered, C. polykrikoides ingested small phytoplankton species that had ESD's < or = 11 microm (e.g. the prymnesiophyte Isochrysis galbana, an unidentified cryptophyte, the cryptophyte Rhodomonas salina, the raphidophyte Heterosigma akashiwo, and the dinoflagellate Amphidinium carterae). It did not feed on larger phytoplankton species that had ESD's > or = 12 microm (e.g. the dinoflagellates Heterocapsa triquetra, Prorocentrum minimum, Scrippsiella sp., Alexandrium tamarense, Prorocentrum micans, Gymnodinium catenatum, Akashiwo sanguinea, and Lingulodinium polyedrum). Specific growth rates of C. polykrikoides on a cryptophyte increased with increasing mean prey concentration, with saturation at a mean prey concentration of approximately 270 ng C ml(-1) (i.e. 15,900 cells ml(-1)). The maximum specific growth rate (mixotrophic growth) of C. polykrikoides on a cryptophyte was 0.324 d(-1), under a 14:10 h light-dark cycle of 50 microE m(-2) s(-1), while its growth rate (phototrophic growth) under the same light conditions without added prey was 0.166 d(-1). Maximum ingestion and clearance rates of C. polykrikoides on a cryptophyte were 0.16 ng C grazer(-1)d(-1) (9.4 cells grazer(-1)d(-1)) and 0.33 microl grazer(-1)h(-1), respectively. Calculated grazing coefficients by C. polykrikoides on cryptophytes were 0.001-0.745 h(-1) (i.e. 0.1-53% of cryptophyte populations were removed by a C. polykrikoides population in 1 h). The results of the present study suggest that C. polykrikoides sometimes has a considerable grazing impact on populations of cryptophytes.  相似文献   

7.
Few protistan grazers feed on toxic dinoflagellates, and low grazing pressure on toxic dinoflagellates allows these dinoflagellates to form red‐tide patches. We explored the feeding ecology of the newly described heterotrophic dinoflagellate Gyrodinium moestrupii when it fed on toxic strains of Alexandrium minutum, Alexandrium tamarense, and Karenia brevis and on nontoxic strains of A. tamarense, Prorocentrum minimum, and Scrippsiella trochoidea. Specific growth rates of G. moestrupii feeding on each of these dinoflagellates either increased continuously or became saturated with increasing mean prey concentration. The maximum specific growth rate of G. moestrupii feeding on toxic A. minutum (1.60/d) was higher than that when feeding on nontoxic S. trochoidea (1.50/d) or P. minimum (1.07/d). In addition, the maximum growth rate of G. moestrupii feeding on the toxic strain of A. tamarense (0.68/d) was similar to that when feeding on the nontoxic strain of A. tamarense (0.71/d). Furthermore, the maximum ingestion rate of G. moestrupii on A. minutum (2.6 ng C/grazer/d) was comparable to that of S. trochoidea (3.0 ng C/grazer/d). Additionally, the maximum ingestion rate of G. moestrupii on the toxic strain of A. tamarense (2.1 ng C/grazer/d) was higher than that when feeding on the nontoxic strain of A. tamarense (1.3 ng C/grazer/d). Thus, feeding by G. moestrupii is not suppressed by toxic dinoflagellate prey, suggesting that it is an effective protistan grazer of toxic dinoflagellates.  相似文献   

8.
To assess the effects of fluctuating prey availability on predator population dynamics and grazing impact on phytoplankton, we measured growth and grazing rates of three heterotrophic dinoflagellate species—Oxyrrhis marina, Gyrodinium dominans and Gyrodinium spirale—before and after depriving them of phytoplankton prey. All three dinoflagellate species survived long periods (> 10 d) without algal prey, coincident with decreases in predator abundance and cell size. After 1–3 wks, starvation led to a 17–57% decrease in predator cell volume and some cells became deformed and transparent. When re‐exposed to phytoplankton prey, heterotrophs ingested prey within minutes and increased cell volumes by 4–17%. At an equivalent prey concentration, continuously fed predators had ~2‐fold higher specific growth rates (0.18 to 0.55 d?1) than after starvation (?0.16 to 0.25 d?1). Maximum specific predator growth rates would be achievable only after a time lag of at least 3 d. A delay in predator growth poststarvation delays predator‐induced phytoplankton mortality when prey re‐emerges at the onset of a bloom event or in patchy prey distributions. These altered predator‐prey population dynamics have implications for the formation of phytoplankton blooms, trophic transfer rates, and potential export of carbon.  相似文献   

9.
The marine phototrophic dinoflagellate Gymnodinium smaydae n. sp. is described from cells prepared for light, scanning, and transmission electron microscopy. Also, sequences of the small (SSU) and large subunits (LSU) and the internal transcribed spacer region (ITS1–5.8S–ITS2) of ribosomal DNA were analyzed. This newly isolated dinoflagellate possessed nuclear chambers, nuclear fibrous connective, an apical groove running in a counterclockwise direction around the apex, and a major accessory pigment peridinin, which are four key features for the genus Gymnodinium. The epicone was conical with a round apex, while the hypocone was ellipsoid. Cells growing photosynthetically were 6.3–10.9 μm long and 5.1–10.0 μm wide, and therefore smaller than any other Gymnodinium species so far reported except Gymnodinium nanum. Cells were covered with polygonal amphiesmal vesicles arranged in 11 horizontal rows, and the vesicles were smaller than those of the other Gymnodinium species. This dinoflagellate had a sharp and elongated ventral ridge reaching half way down the hypocone, unlike other Gymnodinium species. Moreover, displacement of the cingulum was 0.4–0.6 × cell length while in other known Gymnodinium species it is less than 0.3 × cell length. In addition, the new species possessed a peduncle, permanent chloroplasts, pyrenoids, trichocysts, pusule systems, and small knobs along the apical furrow, but it lacked an eyespot, nematocysts, and body scales. The sequence of the SSU, ITS1–5.8S–ITS2, and LSU rDNA region differed by 1.5–3.8%, 6.0–17.4%, and 9.1–17.5%, respectively, from those of the most closely related species. The phylogenetic trees demonstrated that the new species belonged to the Gymnodinium clade at the base of a clade consisting of Gymnodinium acidotum, Gymnodinium dorsalisulcum, Gymnodinium eucyaneum, etc. Based on morphological and molecular data, we suggest that the taxon represents a new species, Gymnodinium smaydae n. sp.  相似文献   

10.
To investigate interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and different heterotrophic protist and copepod species, feeding by common heterotrophic dinoflagellates (Oxyrrhis marina and Gyrodinium dominans), naked ciliates (Strobilidium sp. approximately 35 μm in cell length and Strombidinopsis sp. approximately 100 μm in cell length), and calanoid copepods Acartia spp. (A. hongi and A. omorii) on P. shiwhaense was explored. In addition, the feeding activities of P. shiwhaense on these heterotrophic protists were investigated. Furthermore, the growth and ingestion rates of O. marina, G. dominans, Strobilidium sp., Strombidinopsis sp., and Acartia spp. as a function of P. shiwhaense concentration were measured. O. marina, G. dominans, and Strombidinopsis sp. were able to feed on P. shiwhaense, but Strobilidium sp. was not. However, the growth rates of O. marina, G. dominans, Strobilidium sp., and Strombidinopsis sp. feeding on P. shiwhaense were very low or negative at almost all concentrations of P. shiwhaense. P. shiwhaense frequently fed on O. marina and Strobilidium sp., but did not feed on Strombidinopsis sp. and G. dominans. G. dominans cells swelled and became dead when incubated with filtrate from the experimental bottles (G. dominans + P. shiwhaense) that had been incubated for one day. The ingestion rates of O. marina, G. dominans, and Strobilidium sp. on P. shiwhaense were almost zero at all P. shiwhaense concentrations, while those of Strombidinopsis sp. increased with prey concentration. The maximum ingestion rate of Strombidinopsis sp. on P. shiwhaense was 5.3 ng C predator−1d−1 (41 cells predator−1d−1), which was much lower than ingestion rates reported in the literature for other mixotrophic dinoflagellate prey species. With increasing prey concentrations, the ingestion rates of Acartia spp. on P. shiwhaense increased up to 930 ng C ml−1 (7180 cells ml−1) at the highest prey concentration. The highest ingestion rate of Acartia spp. on P. shiwhaense was 4240 ng C predator−1d−1 (32,610 cells predator−1d−1), which is comparable to ingestion rates from previous studies on other dinoflagellate prey species calculated at similar prey concentrations. Thus, P. shiwhaense might play diverse ecological roles in marine planktonic communities by having an advantage over competing phytoplankton in anti-predation against potential protistan grazers.  相似文献   

11.
Gymnodinium smaydae is one of the fastest growing dinoflagellates. However, its population dynamics are affected by both growth and mortality due to predation. Thus, feeding by common heterotrophic dinoflagellates Gyrodinium dominans , Gyrodinium moestrupii , Oblea rotunda , Oxyrrhis marina , and Polykrikos kofoidii , and the naked ciliate Pelagostrobilidium sp. on G. smaydae was investigated in the laboratory. Furthermore, growth and ingestion rates of O. marina , G. dominans , and Pelagostrobilidium sp. on G. smaydae in response to prey concentration were also determined. Oxyrrhis marina , G. dominans , G. moestrupii , and Pelagostrobilidium sp. were able to feed on G. smaydae , but P. kofoidii and O. rotunda did not feed on this dinoflagellate. The maximum growth rate of O. marina on G. smaydae was 0.411 per day. However, G. smaydae did not support the positive growth of Pelagostrobilidium sp. The maximum ingestion rates of O. marina and Pelagostrobilidium sp. on G. smaydae were 0.27 and 6.91 ng C · predator?1 · d?1, respectively. At the given mean prey concentrations, the highest growth and ingestion rates of G. dominans on G. smaydae were 0.114 per day and 0.04 ng C · predator?1 · d?1, respectively. The maximum growth and ingestion rates of O. marina on G. smaydae are lower than those on most of the other algal prey species. Therefore, O. marina may be an effective predator of G. smaydae , but G. smaydae may not be the preferred prey for supporting high growth of the predator in comparison to other species as inferred from a literature survey.  相似文献   

12.
Woloszynskia species are dinoflagellates in the order Suessiales inhabiting marine or freshwater environments; their ecophysiology has not been well investigated, in particular, their trophic modes have yet to be elucidated. Previous studies have reported that all Woloszynskia species are photosynthetic, although their mixotrophic abilities have not been explored. We isolated a dinoflagellate from coastal waters in western Korea and established clonal cultures of this dinoflagellate. On the basis of morphology and analyses of the small/large subunit rRNA gene (GenBank accession number=FR690459), we identified this dinoflagellate as Woloszynskia cincta. We further established that this dinoflagellate is a mixotrophic species. We found that W. cincta fed on algal prey using a peduncle. Among the diverse prey provided, W. cincta ingested those algal species that had equivalent spherical diameters (ESDs) ≤12.6 μm, exceptions being the diatom Skeletonema costatum and the dinoflagellate Prorocentrum minimum. However, W. cincta did not feed on larger algal species that had ESDs≥15 μm. The specific growth rates for W. cincta increased continuously with increasing mean prey concentration before saturating at a concentration of ca. 134 ng C/ml (1,340 cells/ml) when Heterosigma akashiwo was used as food. The maximum specific growth rate (i.e. mixotrophic growth) of W. cincta feeding on H. akashiwo was 0.499 d(-1) at 20 °C under illumination of 20 μE/m(2) /s on a 14:10 h light-dark cycle, whereas its growth rate (i.e. phototrophic growth) under the same light conditions without added prey was 0.040 d(-1). The maximum ingestion and clearance rates of W. cincta feeding on H. akashiwo were 0.49 ng C/grazer/d (4.9 cells/grazer/d) and 1.9 μl/grazer/h, respectively. The calculated grazing coefficients for W. cincta on co-occurring H. akashiwo were up to 1.1 d(-1). The results of the present study suggest that grazing by W. cincta can have a potentially considerable impact on prey algal populations.  相似文献   

13.
The heterotrophic dinoflagellate Gyrodiniellum shiwhaense n. gen., n. sp. is described from live cells and from cells prepared for light, scanning electron, and transmission electron microscopy. Also, sequences of the small subunit (SSU) and large subunit (LSU) of rDNA have been analyzed. The episome is conical, while the hyposome is ellipsoid. Cells are covered with polygonal amphiesmal vesicles arranged in 16 horizontal rows. Unlike other Gyrodinium-like dinoflagellates, the apical end of the cell shows a loop-shaped row of five elongate amphiesmal vesicles. The cingulum is displaced by 0.3-0.5 × cell length. Cells that were feeding on the dinoflagellate Amphidinium carterae Hulburt were 9.1-21.6 μm long and 6.6-15.7 μm wide. Cells of G. shiwhaense contain nematocysts, trichocysts, a peduncle, and pusule systems, but they lack chloroplasts. The SSU rDNA sequence is >3% different from that of the six most closely related species: Warnowia sp. (FJ947040), Lepidodinium viride Watanabe, Suda, Inouye, Sawaguchi & Chihara, Gymnodinium aureolum (Hulburt) Hansen, Gymnodinium catenatum Graham, Nematodinium sp. (FJ947039), and Gymnodinium sp. MUCC284 (AF022196), while the LSU rDNA is 11-12% different from that of Warnowia sp., G. aureolum, and Nematodinium sp. (FJ947041). The phylogenetic trees show that the species belongs in the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers and a nuclear fibrous connective. Unlike Polykrikos spp., cells of which possess a taeniocyst-nematocyst complex, G. shiwhaense has nematocysts but lacks taeniocysts. It differs from Paragymnodinium shiwhaense Kang, Jeong, Moestrup & Shin by possessing nematocysts with stylets and filaments. Gyrodiniellum shiwhaense n. gen., n. sp. furthermore lacks ocelloids, in contrast to Warnowia spp., Nematodinium spp., and Proterythropsis spp. Based on morphological and molecular data, we suggest that the taxon represents a new species within a new genus.  相似文献   

14.
The gonyaulacalean dinoflagellates Amylax spp. were recently found to contain plastids of the cryptophyte origin, more specifically of Teleaulax amphioxeia. However, not only how the dinoflagellates get the plastids of the cryptophyte origin is unknown but also their ecophysiology, including growth and feeding responses as functions of both light and prey concentration, remain unknown. Here, we report the establishment of Amylax triacantha in culture, its feeding mechanism, and its growth rate using the ciliate prey Mesodinium rubrum (= Myrionecta rubra) in light and dark, and growth and grazing responses to prey concentration and light intensity. The strain established in culture in this study was assigned to A. triacantha, based on morphological characteristics (particularly, a prominent apical horn and three antapical spines) and nuclear SSU and LSU rDNA sequences. Amylax triacantha grew well in laboratory culture when supplied with the marine mixotrophic ciliate M. rubrum as prey, reaching densities of over 7.5 × 103 cells/ml. Amylax triacantha captured its prey using a tow filament, and then ingested the whole prey by direct engulfment through the sulcus. The dinoflagellate was able to grow heterotrophically in the dark, but the growth rate was approximately two times lower than in the light. Although mixotrophic growth rates of A. triacantha increased sharply with mean prey concentrations, with maximum growth rate being 0.68/d, phototrophic growth (i.e. growth in the absence of prey) was ?0.08/d. The maximum ingestion rate was 2.54 ng C/Amylax/d (5.9 cells/Amylax/d). Growth rate also increased with increasing light intensity, but the effect was evident only when prey was supplied. Increased growth with increasing light intensity was accompanied by a corresponding increase in ingestion. In mixed cultures of two predators, A. triacantha and Dinophysis acuminata, with M. rubrum as prey, A. triacantha outgrew D. acuminata due to its approximately three times higher growth rate, suggesting that it can outcompete D. acuminata. Our results would help better understand the ecophysiology of dinoflagellates retaining foreign plastids.  相似文献   

15.
As part of the development of a method to control the outbreak and persistence of red tides using mass-cultured heterotrophic protist grazers, we measured the growth and ingestion rates of cultured Oxyrrhis marina (a heterotrophic dinoflagellate) on cultured Heterosigma akashiwo (a raphidophyte) in bottles in the laboratory and in mesocosms (ca. 60 liter) in nature, and those of the cultured grazer on natural populations of the red-tide organism in mesocosms set up in nature. In the bottle incubation, specific growth rates of O. marina increased rapidly with increasing concentration of cultured prey up to ca. 950 ng C ml(-1) (equivalent to 9,500 cells ml(-1)), but were saturated at higher concentrations. Maximum specific growth rate (mumax), KGR (prey concentration sustaining 0.5 mumax) and threshold prey concentration of O. marina on H. akashiwo were 1.43 d(-1), 104 ng C ml(-1), and 8.0 ng C ml(-1), respectively. Maximum ingestion and clearance rates of O. marina were 1.27 ng C grazer(-1) d(-1) and 0.3 microl grazer(-1) h(-1), respectively. Cultured O. marina grew well effectively reducing cultured and natural populations of H. akashiwo down to a very low concentration within 3 d in the mesocosms. The growth and ingestion rates of cultured O. marina on natural populations of H. akashiwo in the mesocosms were 39% and 40%, respectively, of those calculated based on the results from the bottle incubation in the laboratory, while growth and ingestion rates of cultured O. marina on cultured H. akashiwo in the mesocosms were 55% and 36%, respectively. Calculated grazing impact by O. marina on natural populations of H. akashiwo suggests that O. marina cultured on a large scale could be used for controlling red tides by H. akashiwo near aquaculture farms that are located in small ponds, lagoons, semi-enclosed bays, and large land-aqua tanks to which fresh seawater should be frequently supplied.  相似文献   

16.
We investigated growth rates, grazing rates, and prey selection of Polykrikos kofoidii when feeding on several species of red-tide and/or toxic dinoflagellates. Polykrikos kofoidii ingested all prey species used in this study, exhibiting positive growth on Lingulodinium polyedrum, Scrippsiella trochoidea, Ceratium furca, Gymnodinium catenatum, Gyrodinium impudicum, Prorocentrum micans, and the toxic dinoflagellate Amphidinium carterae, but not on P. minimum. Specific growth rates of P. kofoidii increased rapidly with increasing density of L. polyedrum, S. trochoidea, C. furca, and G. catenatum before saturating between 500-2,000 ng C ml(-1). Specific growth rates increased continuously when P. kofoidii was fed the other prey species. Maximum specific growth rates of P. kofoidii on G. catenatum (1.12 d(-1)), S. trochoidea (0.97 d(-1)), and L. polyedrum (0.83 d(-1)) were higher than those on C. furca (0.35 d(-1)), A. carterae (0.10 d(-1)), P. micans (0.06 d(-1)), G. impudicum (0.06 d(-1)), and P. minimum (-0.03 d(-1)). Threshold prey concentrations (where net growth = 0) were 54-288 ng C ml(-1). Maximum ingestion and clearance rates of P. kofoidii on these dinoflagellates were 5-24 ng C pseudocolony(-1) d(-1) and 1.0-5.9 microl pseudocolony(-1) h(-1), respectively. Polykrikos kofoidii strongly selected L. polyedrum over S. trochoidea in prey mixtures. Polykrikos kofoidii exhibited higher maximum growth, ingestion, and clearance rates than previously reported for the mixotrophic dinoflagellate Fragilidium cf. mexicanum or the heterotrophic dinoflagellates Protoperidinium cf. divergens and P. crassipes, when grown on the same prey species. Grazing coefficients calculated by combining field data on abundances of Polykrikos spp. and co-occurring red-tide dinoflagellate prey with laboratory data on ingestion rates obtained in the present study suggest that Polykrikos spp. sometimes have a considerable grazing impact on prey populations.  相似文献   

17.
The genus Paragymnodinium currently includes two species, P. shiwhaense and P. stigmaticum, that are characterized by mixotrophic nutrition and the possession of nematocysts. In this study, two new dinoflagellates belonging to this genus were described based on observations using LM, SEM, and TEM together with a molecular analysis. Cells of P. asymmetricum sp. nov., isolated from Nha Trang Beach, Vietnam, were 7.9–12.6 μm long and 4.7–9.0 μm wide. The species showed no evidence of feeding behavior and was able to sustain itself phototrophically. Paragymnodinium asymmetricum shared many features with P. shiwhaense, including presence of nematocysts, absence of an eyespot, and a planktonic lifestyle, but was clearly distinguished by the asymmetric shape of the hyposome, possession of a single chloroplast, and its nutritional mode. Cells of P. inerme sp. nov., isolated from Jogashima, Kanagawa Pref, Japan, were 15.3–23.7 μm long and 10.9–19.6 μm wide. This species also showed no evidence of feeding behavior. Paragymnodinium inerme was similar to cells of P. shiwhaense in shape and planktonic lifestyle, but its nutritional mode was different. The presence of incomplete nematocysts was also a unique feature. A phylogenetic analysis inferred from concatenated SSU and LSU rDNA sequences recovered the two dinoflagellates in a robust clade with Paragymnodinium spp., within the clade of Gymnodinium sensu stricto. This evidence, together with their morphological similarities, made it reasonable to conclude that these two dinoflagellates are new species of Paragymnodinium.  相似文献   

18.
Takayama helix is a mixotrophic dinoflagellate that can feed on diverse algal prey. We explored the effects of light intensity and water temperature, two important physical factors, on its autotrophic and mixotrophic growth rates when fed on Alexandrium minutum CCMP1888. Both the autotrophic and mixotrophic growth rates and ingestion rates of T. helix on A. minutum were significantly affected by photon flux density. Positive growth rates of T. helix at 6–58 μmol photons · m?2 · s?1 were observed in both the autotrophic (maximum rate = 0.2 · d?1) and mixotrophic modes (0.4 · d?1). Of course, it did not grow both autotrophically and mixotrophically in complete darkness. At ≥247 μmol photons · m?2 · s?1, the autotrophic growth rates were negative (i.e., photoinhibition), but mixotrophy turned these negative rates to positive. Both autotrophic and mixotrophic growth and ingestion rates were significantly affected by water temperature. Under both autotrophic and mixotrophic conditions, it grew at 15–28°C, but not at ≤10 or 30°C. Therefore, both light intensity and temperature are critical factors affecting the survival and growth of T. helix.  相似文献   

19.
20.
The influence of prey mobility and species on prey selection by the coccinellid Harmonia axyridis Pallas was determined under laboratory conditions for two prey species, Hyaliodes vitripennis (Say) and Tetranychus urticae Koch. Prey selection was influenced by prey mobility. In the presence of active prey, the coccinellid selected T. urticae while in presence of immobilized prey, H. vitripennis was preferred. Harmonia axyridis searching time was longer in the presence of active H. vitripennis than in the presence of active T. urticae. Moreover, the coccinellid capture rate was lower for active H. vitripennis caused by effective defensive mechanisms. Prey suitability was affected by prey mobility and species. Immobilized H. vitripennis were the most profitable prey, i.e. induced a shorter developmental time and no mortality. However, active H. vitripennis were not a suitable food source for H. axyridis. Our results suggested that three factors are involved in prey selection by H. axyridis: (i) prey mobility; (ii) prey defensive mechanisms; and (iii) prey species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号