首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myocardium of the developing heart tube is covered by epicardium. These epicardial cells undergo a process of epithelial-to-mesenchymal transformation (EMT) and develop into epicardium-derived cells (EPDCs). The ingrowing EPDCs differentiate into several celltypes of which the cardiac fibroblasts form the main group. Disturbance of EMT of the epicardium leads to serious hypoplasia of the myocardium, abnormal coronary artery differentiation and Purkinje fibre paucity. Interestingly, the electrophysiological properties of epicardial cells and whether EMT influences electrical conductivity of epicardial cells is not yet known. We studied the electrophysiological aspects of epicardial cells before and after EMT in a dedicated in vitro model, using micro-electrode arrays to investigate electrical conduction across epicardial cells. Therefore, human adult epicardial cells were placed between two neonatal rat cardiomyocyte populations. Before EMT the epicardial cells have a cobblestone (epithelium-like) phenotype that was confirmed by staining for the cell-adhesion molecule β-catenin. After spontaneous EMT in vitro the EPDCs acquired a spindle-shaped morphology confirmed by vimentin staining. When comparing both types we observed that the electrical conduction is influenced by EMT, resulting in significantly reduced conductivity of spindle-shaped EPDCs, associated with a conduction block. Furthermore, the expression of both gap junction (connexins 40, Cx43 and Cx45) and ion channel proteins (SCN5a, CACNA1C and Kir2.1) was down-regulated after EMT. This study shows for the first time the conduction differences between epicardial cells before and after EMT. These differences may be of relevance for the role of EPDCs in cardiac development, and in EMT-related cardiac dysfunction.  相似文献   

2.
3.
4.
5.
The epicardium is the outer epithelial covering the heart. This tissue undergoes an epithelial‐to‐mesenchymal transition (EMT) to generate mesenchymal epicardial‐derived cells (EPDCs) that populate the extracellular matrix of the subepicardium and contribute to the development of the coronary vessels and cardiac interstitial cells. Although epicardial EMT plays a crucial role in heart development, the molecular regulation of this process is incompletely understood. Here we examined the possible role of the EMT regulator Snail1 in this process. Snail1 is expressed in the epicardium and EPDCs during mouse cardiac development. To determine the function of Snail1 in epicardial EMT, we deleted Snail1 in the epicardium using Wt1‐ and Tbx18‐Cre drivers. Unexpectedly, epicardial‐specific Snail1 mutants are viable and fertile and do not display any obvious morphological or functional cardiac abnormalities. Molecular analysis of these mice reveals that epicardial EMT occurs normally, and epicardial derivatives are established in these mutants. We conclude that Snail1 is not required for the initiation and progression of embryonic epicardial EMT. genesis 51:32–40, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The epicardium is the primary source of coronary vascular smooth muscle cells (cVSMCs) and fibroblasts that reside in the compact myocardium. To form these epicardial-derived cells (EPDCs), the epicardium undergoes the process of epithelial to mesenchymal transition (EMT). Although several signaling pathways have been identified that disrupt EMT, no pathway has been reported that restricts this developmental process. Here, we identify neurofibromin 1 (Nf1) as a key mediator of epicardial EMT. To determine the function of Nf1 during epicardial EMT and the formation of epicardial derivatives, cardiac fibroblasts and cVSMCs, we generated mice with a tissue-specific deletion of Nf1 in the epicardium. We found that mutant epicardial cells transitioned more readily to mesenchymal cells in vitro and in vivo. The mesothelial epicardium lost epithelial gene expression and became more invasive. Using lineage tracing of EPDCs, we found that the process of EMT occurred earlier in Nf1 mutant hearts, with an increase in epicardial cells entering the compact myocardium. Moreover, loss of Nf1 caused increased EPDC proliferation and resulted in more cardiac fibroblasts and cVSMCs. Finally, we were able to partially reverse the excessive EMT caused by loss of Nf1 by disrupting Pdgfrα expression in the epicardium. Conversely, Nf1 activation was able to inhibit PDGF-induced epicardial EMT. Our results demonstrate a regulatory role for Nf1 during epicardial EMT and provide insights into the susceptibility of patients with disrupted NF1 signaling to cardiovascular disease.  相似文献   

7.
Cardiac patch is considered a promising strategy for enhancing stem cell therapy of myocardial infarction (MI). However, the underlying mechanisms for cardiac patch repairing infarcted myocardium remain unclear. In this study, we investigated the mechanisms of PCL/gelatin patch loaded with MSCs on activating endogenous cardiac repair. PCL/gelatin patch was fabricated by electrospun. The patch enhanced the survival of the seeded MSCs and their HIF‐1α, Tβ4, VEGF and SDF‐1 expression and decreased CXCL14 expression in hypoxic and serum‐deprived conditions. In murine MI models, the survival and distribution of the engrafted MSCs and the activation of the epicardium were examined, respectively. At 4 weeks after transplantation of the cell patch, the cardiac functions were significantly improved. The engrafted MSCs migrated across the epicardium and into the myocardium. Tendency of HIF‐1α, Tβ4, VEGF, SDF‐1 and CXCL14 expression in the infarcted myocardium was similar with expression in vitro. The epicardium was activated and epicardial‐derived cells (EPDCs) migrated into deep tissue. The EPDCs differentiated into endothelial cells and smooth muscle cells, and some of EPDCs showed to have differentiated into cardiomyocytes. Density of blood and lymphatic capillaries increased significantly. More c‐kit+ cells were recruited into the infarcted myocardium after transplantation of the cell patch. The results suggest that epicardial transplantation of the cell patch promotes repair of the infarcted myocardium and improves cardiac functions by enhancing the survival of the transplanted cells, accelerating locality paracrine, and then activating the epicardium and recruiting endogenous c‐kit+ cells. Epicardial transplantation of the cell patch may be applied as a novel effective MI therapy.  相似文献   

8.
心外膜是覆盖在心脏外层的间皮组织。心外膜来源于脏壁中胚层的前心外膜,后者位于心管流入极附近。心外膜的部分细胞通过上皮间充质转化进入心外膜下层,随后形成血管内皮、成纤维和平滑肌细胞,最终导致冠脉系统的形成。心外膜细胞可能形成心肌细胞,并且可能是心脏驻留干细胞的来源。因此,它在心脏修复治疗中发挥巨大作用。本文回顾了该领域的最新研究进展并且提出了目前存在的问题。  相似文献   

9.
10.
This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.  相似文献   

11.
Epicardium-derived cells (EPDCs) contribute to formation of coronary vessels and fibrous matrix of the mature heart. Nuclear factor of activated T-cells cytoplasmic 1 (NFATC1) is expressed in cells of the proepicardium (PE), epicardium and EPDCs in mouse and chick embryos. Conditional loss of NFATC1 expression in EPDCs in mice causes embryonic death by E18.5 with reduced coronary vessel and fibrous matrix penetration into myocardium. In osteoclasts, calcineurin-mediated activation of NFATC1 by receptor activator of NFκB ligand (RANKL) signaling induces cathepsin K (CTSK) expression for extracellular matrix degradation and cell invasion. RANKL/NFATC1 pathway components also are expressed in EPDCs, and loss of NFATC1 in EPDCs causes loss of CTSK expression in the myocardial interstitium in vivo. Likewise, RANKL treatment induces Ctsk expression in PE-derived cell cultures via a calcineurin-dependent mechanism. In chicken embryo hearts, RANKL treatment increases the distance of EPDC invasion into myocardium, and this response is calcineurin dependent. Together, these data demonstrate a crucial role for the RANKL/NFATC1 signaling pathway in promoting invasion of EPDCs into the myocardium by induction of extracellular matrix-degrading enzyme gene expression.  相似文献   

12.
The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart, we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12. The migration of epicardially derived fibroblasts toward the interface between compact and trabecular myocardium is completed around ED14. Remarkably, epicardially derived fibroblasts do not migrate into the trabecular myocardium until after ED17. Migration of EPDCs into the atrioventricular cushion mesenchyme commences around ED12. As development progresses, the number of EPDCs increases significantly, specifically in the leaflets which derive from the lateral atrioventricular cushions. In these developing leaflets the epicardially derived fibroblasts eventually largely replace the endocardially derived cells. Importantly, the contribution of EPDCs to the leaflets derived from the major AV cushions is very limited. The differential contribution of EPDCs to the various leaflets of the atrioventricular valves provides a new paradigm in valve development and could lead to new insights into the pathogenesis of abnormalities that preferentially affect individual components of this region of the heart. The notion that there is a significant difference in the contribution of epicardially and endocardially derived cells to the individual leaflets of the atrioventricular valves has also important pragmatic consequences for the use of endocardial and epicardial cre-mouse models in studies of heart development.  相似文献   

13.
To study the efficiency of maintaining the reduced tissue environment via pre-treatment with natural antioxidant resveratrol in stem cell therapy, we pre-treated male Sprague-Dawley rats with resveratrol (2.5 mg/kg/day gavaged for 2 weeks). After occlusion of the left anterior descending coronary artery (LAD), adult cardiac stem cells stably expressing EGFP were injected into the border zone of the myocardium. One week after the LAD occlusion, the cardiac reduced environment was confirmed in resveratrol-treated rat hearts by the enhanced expression of nuclear factor-E2-related factor-2 (Nrf2) and redox effector factor-1 (Ref-1). In concert, cardiac functional parameters (left ventricular ejection fraction and fractional shortening) were significantly improved. The improvement of cardiac function was accompanied by the enhanced stem cell survival and proliferation as demonstrated by the expression of cell proliferation marker Ki67 and differentiation of stem cells towards the regeneration of the myocardium as demonstrated by the enhanced expression of EGFP 28 days after LAD occlusion in the resveratrol-treated hearts. Our results demonstrate that resveratrol maintained a reduced tissue environment by overexpressing Nrf2 and Ref-1 in rats resulting in an enhancement of the cardiac regeneration of the adult cardiac stem cells as demonstrated by increased cell survival and differentiation leading to cardiac function.  相似文献   

14.
Many cell types are currently being studied as potential sources of cardiomyocytes for cell transplantation therapy to repair and regenerate damaged myocardium. The question remains as to which progenitor cell represents the best candidate. Bone marrow-derived cells and endothelial progenitor cells have been tested in clinical studies. These cells are safe, but their cardiogenic potential is controversial. The functional benefits observed are probably due to enhanced angiogenesis, reduced ventricular remodeling, or to cytokine-mediated effects that promote the survival of endogenous cells. Human embryonic stem cells represent an unlimited source of cardiomyocytes due to their great differentiation potential, but each step of differentiation must be tightly controlled due to the high risk of teratoma formation. These cells, however, confront ethical barriers and there is a risk of graft rejection. These last two problems can be avoided by using induced pluripotent stem cells (iPS), which can be autologously derived, but the high risk of teratoma formation remains. Cardiac progenitor cells have the advantage of being cardiac committed, but important questions remain unanswered, such as what is the best marker to identify and isolate these cells? To date the different markers used to identify adult cardiac progenitor cells also recognize progenitor cells that are outside the heart. Thus, it cannot be determined whether the cardiac progenitor cells identified in the adult heart represent resident cells present since fetal life or extracardiac cells that colonized the heart after cardiac injury. Developmental studies have identified markers of multipotent progenitors, but it is unknown whether these markers are specific for adult progenitors when expressed in the adult myocardium. Cardiac regeneration is dependent on the stability of the cells transplanted into the host myocardium and on the electromechanical coupling with the endogenous cells. Finally, the promotion of endogenous regenerative processes by mobilizing endogenous progenitors represents a complementary approach to cell transplantation therapy.  相似文献   

15.
Myocardial infarction (MI) leads to a severe loss of cardiomyocytes, which in mammals are replaced by scar tissue. Epicardial derived cells (EPDCs) have been reported to differentiate into cardiomyocytes during development, and proposed to have cardiomyogenic potential in the adult heart. However, mouse MI models reveal little if any contribution of EPDCs to myocardium. In contrast to adult mammals, teleosts possess a high myocardial regenerative capacity. To test if this advantage relates to the properties of their epicardium, we studied the fate of EPDCs in cryoinjured zebrafish hearts. To avoid the limitations of genetic labelling, which might trace only a subpopulation of EPDCs, we used cell transplantation to track all EPDCs during regeneration. EPDCs migrated to the injured myocardium, where they differentiated into myofibroblasts and perivascular fibroblasts. However, we did not detect any differentiation of EPDCs nor any other non-cardiomyocyte population into cardiomyocytes, even in a context of impaired cardiomyocyte proliferation. Our results support a model in which the epicardium promotes myocardial regeneration by forming a cellular scaffold, and suggests that it might induce cardiomyocyte proliferation and contribute to neoangiogenesis in a paracrine manner.  相似文献   

16.
Cre-LoxP-mediated genetic lineage trace has been used to illuminate the cell fate of progenitor cells in vivo. Application of this strategy to the epicardium, a sheet of cells covering the surface of heart, revealed that it dynamically participates in both heart development and postnatal heart repair and regeneration. After myocardial infarction, epicardial cells undergo epithelial-to-mesenchymal transition (EMT) and mainly adopt myofibroblast, fibroblast and smooth muscle cell fates. Here we present the wholemount images that map epicardial EMT following myocardial infarction, taking advantage of an inducible epicardial Cre line and a double fluorescence reporter. While remote epicardium retained its epithelial cell shape, reactivated epicardium in the infarcted region showed significant EMT. This image supports active involvement of the epicardium in repair and regeneration of infarcted myocardium.  相似文献   

17.
During the last decade, embryonic stem cells (ESC) have unleashed new avenues in the field of developmental biology and emerged as a potential tool to understand the molecular mechanisms taking place during the process of differentiation from the embryonic stage to adult phenotype. Their uniqueness lies in retaining the capacity of unlimited proliferation and to differentiate into all somatic cells. Together with promising results from rodent models, ESC has raised great hope among for human ESC-based cell replacement therapy. ESC could potentially revolutionize medicine by providing a powerful and renewable cell source capable of replacing or repairing tissues that have been damaged in almost all degenerative diseases such as Parkinson's disease, myocardial infarction (MI) and diabetes. Somatic stem cells are an attractive option to explore for transplantation because they are autologous, but their differentiation potential is very limited. Currently, the major sources of somatic cells used for basic research and clinical trials come from bone marrow. But their widespread acceptability has not been gained because many of the results are confusing and inconsistent. The focus here is on human embryonic stem cells (hESCs), using methods to induce their differentiation to cardiomyocytes in vitro. Their properties in relation to primary human cardiomyocytes and their ability to integrate into host myocardium have been investigated into how they can enhance cardiac function. However, important aspects of stem cell biology and the transplantation process remain unresolved. In summary, this review updates the recent progress of ES cell research in cell therapy, discusses the problems in the practical utility of ESC, and evaluates how far this adjunctive experimental approach can be successful.  相似文献   

18.
为检测血管紧张素Ⅱ(angiotensin Ⅱ,AⅡ)对小鼠胚胎干细胞(embryonic stem cells,ESCs)向心肌细胞方向分化的作用,采用10-4 mol/L维生素C诱导小鼠R1胚胎干细胞分化为心肌细胞. Western印记检测胚胎干细胞诱导分化的心肌细胞中表达血管紧张素Ⅱ1 型受体(angiotensin Ⅱ type 1 receptor,AT1R).诱导分化期间用1 μmol/L AⅡ刺激胚胎干细胞,计数搏动拟胚体的比例;诱导分化第14 d用real-time RT-PCR 和Western 印记检测心肌标志物的表达确定其作用. 结果显示,与对照组相比,1 μmol/L AⅡ处理组可显著增加搏动拟胚体的比例,上调心肌标志物mRNA的表达. 预先用1 μmol/L洛沙坦处理1 h后可显著阻碍这种上调作用. 本实验结果表明,AⅡ通过AT1R可促进小鼠R1胚胎干细胞向心肌细胞分化.  相似文献   

19.
Notch is an ancient cell signaling system that regulates cell fate specification, stem cell maintenance and initiation of differentiation in embryonic and postnatal tissues.1 Alteration of these functions in the adult have been associated to various types of cancer in which Notch may act as an oncogen or as a tumor suppressor.2,3 As occurs during development, Notch cooperates with other signaling pathways in the transformation process.2,4 Notch has recently been shown to promote epithelial-to-mesenchymal transition (EMT) during cardiac valve formation, via snail induction and subsequent cadherin downregulation.5 One implication of this work is that Notch acting through a similar mechanism, may also be involved in the EMT process that occurs during tumor progression and converts polarized epithelial cells into motile, invasive cells.6  相似文献   

20.
Abstract The epicardium is embryologically formed by outgrowth of proepicardial cells over the naked heart tube. Epicardium-derived cells (EPDCs) migrate into the myocardium, contributing to myocardial architecture, valve development, and the coronary vasculature. Defective EPDC formation causes valve malformations, myocardial thinning, and coronary defects. In the atrioventricular (AV) valves and the fibrous heart skeleton isolating atrial from ventricular myocardium, EPDCs colocalize with periostin, a matrix molecule involved in remodeling. We investigated whether proepicardial outgrowth inhibition affected periostin expression and how this related to development of the AV valves and fibrous heart skeleton.
Periostin expression by epicardium and EPDCs was confirmed in vitro in primary cultures of human and quail EPDCs. Disturbing EPDC formation in quail embryos reduced periostin expression in the endocardial cushions and AV junction. Disturbed fibrous tissue development resulted in AV myocardial connections reflected by preexcitation electrocardiographic patterns.
We conclude that EPDCs are local producers of periostin. Disturbance of EPDC formation results in decreased cardiac periostin levels and hampers the development of fibrous tissue in AV junction and the developing AV valves. The resulting cardiac anomalies might link to Wolff–Parkinson White syndrome with persistent AV myocardial connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号