首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Cardiac patch is considered a promising strategy for enhancing stem cell therapy of myocardial infarction (MI). However, the underlying mechanisms for cardiac patch repairing infarcted myocardium remain unclear. In this study, we investigated the mechanisms of PCL/gelatin patch loaded with MSCs on activating endogenous cardiac repair. PCL/gelatin patch was fabricated by electrospun. The patch enhanced the survival of the seeded MSCs and their HIF‐1α, Tβ4, VEGF and SDF‐1 expression and decreased CXCL14 expression in hypoxic and serum‐deprived conditions. In murine MI models, the survival and distribution of the engrafted MSCs and the activation of the epicardium were examined, respectively. At 4 weeks after transplantation of the cell patch, the cardiac functions were significantly improved. The engrafted MSCs migrated across the epicardium and into the myocardium. Tendency of HIF‐1α, Tβ4, VEGF, SDF‐1 and CXCL14 expression in the infarcted myocardium was similar with expression in vitro. The epicardium was activated and epicardial‐derived cells (EPDCs) migrated into deep tissue. The EPDCs differentiated into endothelial cells and smooth muscle cells, and some of EPDCs showed to have differentiated into cardiomyocytes. Density of blood and lymphatic capillaries increased significantly. More c‐kit+ cells were recruited into the infarcted myocardium after transplantation of the cell patch. The results suggest that epicardial transplantation of the cell patch promotes repair of the infarcted myocardium and improves cardiac functions by enhancing the survival of the transplanted cells, accelerating locality paracrine, and then activating the epicardium and recruiting endogenous c‐kit+ cells. Epicardial transplantation of the cell patch may be applied as a novel effective MI therapy.  相似文献   

3.
The proliferation and epithelial–mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells are the major pathological changes in development of proliferative vitreoretinopathy (PVR), which leads to severe visual impairment. Histone deacetylases (HDACs)‐mediated epigenetic mechanisms play important roles in controlling various physiological and pathological events. However, whether HDACs are involved in the regulation of proliferation and EMT in PRE cells remains unidentified. In this study, we evaluated the expression profile of HDAC family (18 genes) and found that some of class I and class II HDACs were up‐regulated in transforming growth factor‐β2 (TGF‐β2)/TGF‐β1‐stimulated RPE cells. Tricostatin A (TSA), a class I and II HDAC inhibitor, suppressed the proliferation of RPE cells by G1 phase cell cycle arrest through inhibition of cyclin/CDK/p‐Rb and induction of p21 and p27. In the meantime, TSA strongly prevented TGF‐β2–induced morphological changes and the up‐regulation of α‐SMA, collagen type I, collagen type IV, fibronectin, Snail and Slug. We also demonstrated that TSA affected not only the canonical Smad signalling pathway but also the non‐canonical TGF‐β/Akt, MAPK and ERK1/2 pathways. Finally, we found that the underlying mechanism of TSA affects EMT in RPE cells also through down‐regulating the Jagged/Notch signalling pathway. Therefore, this study may provide a new insight into the pathogenesis of PVR, and suggests that epigenetic treatment with HDAC inhibitors may have therapeutic value in the prevention and treatment of PVR.  相似文献   

4.
Radiation‐induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy. It is characterized with two main features including early radiation pneumonitis and fibrosis in later phase. This study was to investigate the potential radioprotective effects of polydatin (PD), which was shown to exert anti‐inflammation and anti‐oxidative capacities in other diseases. In this study, we demonstrated that PD‐mitigated acute inflammation and late fibrosis caused by irradiation. PD treatment inhibited TGF‐β1‐Smad3 signalling pathway and epithelial–mesenchymal transition. Moreover, radiation‐induced imbalance of Th1/Th2 was also alleviated by PD treatment. Besides its free radical scavenging capacity, PD induced a huge increase of Sirt3 in culture cells and lung tissues. The level of Nrf2 and PGC1α in lung tissues was also elevated. In conclusion, our data showed that PD attenuated radiation‐induced lung injury through inhibiting epithelial–mesenchymal transition and increased the expression of Sirt3, suggesting PD as a novel potential radioprotector for RILI.  相似文献   

5.
The recent identification of a mesenchymal stem cell population in adipose tissue has led to an abundance of research focused on the regenerative properties of these cells. As such, adipose‐derived stem cells (ASCs) and potential therapies in craniofacial regeneration have been widely studied. This review will discuss the identification and potential of ASCs, and specifically, preclinical and clinical studies using ASCs in craniofacial repair. Studies involving ASCs in the repair of defects caused by craniosynostosis and Treacher Collins syndrome will be discussed. A comprehensive review of the literature will be presented, focusing on fat grafting and biomaterials‐based approaches that include ASCs for craniofacial regeneration. (Part C) 96:95–97, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
Cancer stem cells (CSCs) and epithelial–mesenchymal transition (EMT)‐type cells are considered as underlying causes of chemoresistance, tumour recurrence and metastasis in pancreatic cancer. We aimed to describe the mechanisms – particularly glycolysis – involved in the regulation of the CSC and EMT phenotypes. We used a gemcitabine‐resistant (GR) Patu8988 cell line, which exhibited clear CSC and EMT phenotypes and showed reliance on glycolysis. Inhibition of glycolysis using 2‐deoxy‐D‐glucose (2‐DG) significantly enhanced the cytotoxicity of gemcitabine and inhibited the CSC and EMT phenotypes in GR cells both in vitro and in vivo. Intriguingly, the use of the reactive oxygen species (ROS) scavenger N‐acetylcysteine (NAC) restored the CSC and EMT phenotypes. H2O2 produced changes similar to those of 2‐DG, indicating that ROS were involved in the acquired cancer stemness and EMT phenotypes of GR cells. Moreover, doublecortin‐like kinase 1 (DCLK1), a pancreatic CSC marker, was highly expressed and regulated the stemness and EMT phenotypes in GR cell. Both 2‐DG and H2O2 treatment suppressed DCLK1 expression, which was also rescued by NAC. Together, these findings revealed that glycolysis promotes the expression of DCLK1 and maintains the CSC and EMT phenotypes via maintenance of low ROS levels in chemoresistant GR cells. The glycolysis‐ROS‐DCLK1 pathway may be potential targets for reversing the malignant behaviour of pancreatic cancer.  相似文献   

9.
10.
11.
Triple‐negative breast cancer (TNBC) is a highly aggressive tumour subtype associated with poor prognosis. The mechanisms involved in TNBC progression remains largely unknown. To date, there are no effective therapeutic targets for this tumour subtype. Paired‐related homeobox 1b (Prrx1b), one of major isoforms of Prrx1, has been identified as a new epithelial–mesenchymal transition (EMT) inducer. However, the function of Prrx1b in TNBC has not been elucidated. In this study, we found that Prrx1b was significantly up‐regulated in TNBC and associated with tumour size and vascular invasion of breast cancer. Silencing of Prrx1b suppressed the proliferation, migration and invasion of basal‐like cancer cells. Moreover, silencing of Prrx1b prevented Wnt/β‐catenin signaling pathway and induced the mesenchymal‐epithelial transition (MET). Taken together, our data indicated that Prrx1b may be an important regulator of EMT in TNBC cells and a new therapeutic target for interventions against TNBC invasion and metastasis.  相似文献   

12.
Bladder cancer (BC) is one of the most frequent urological malignancies, and its molecular mechanism still remains unclear. Recent studies have revealed that MicroRNA (miRNAs) acted as oncogenes or tumor suppressors in a variety of cancers. MiRNA‐96 has been reported to play a significant role in the development and progression of many cancers. In the current study, we found that transforming growth factor (TGF)‐β1 played a significant role in the progression that miR‐96 conducted. And TGF‐β1 could also regulate the expression of FOXQ1, which is the target gene of miR‐96. Furthermore, miR‐96 induced epithelial‐mesenchymal transition in BC cells, which is driven by TGF‐β1. In conclusion, our data revealed that miR‐96 regulates the progression and epithelial‐mesenchymal transition, which is driven by TGF‐β1 in BC cells; it may provide a new thought for the therapy of BC.  相似文献   

13.
Mesenchymal stem cells (MSCs) have been shown to play therapeutic effect in traumatic brain injury (TBI). To augment the therapeutic effect, MSCs could be engineered to over‐express genes that are beneficial for treatment. In the present study, we over‐expressed hypoxia inducible factor (HIF)‐1alpha in bone marrow derived MSCs (BM‐MSCs) and sought to investigate whether HIF‐1alpha could enhance the therapeutic effect of MSCs in a mouse model of TBI. Balb/c mice were subjected to controlled cortical impact injury and MSCs were transplanted intravenously at 6 h after injury. The lesion volume and brain water content were measured and the neurological function was assessed by modified neurologic severity score tests. Double‐labeled immunofluorescence for BrdU and NeuU was performed to determine angiogenesis and neurogenesis. The expression of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) was measured by quantitative RT‐PCR and western blotting. After TBI, mice received BM‐MSCs over‐expressing HIF‐1alpha showed significantly more functional recovery, reduced brain damage, increased angiogenesis and neurogenesis and increased expression of VEGF and EPO, compared with control mice or mice treated with non‐transduced BM‐MSCs. Over‐expression of HIF‐1alpha enhanced BM‐MSCs induced improvement of neurological recovery after TBI, by stimulating angiogenesis and neurogenesis.  相似文献   

14.
Emerging evidence has classified the aberrant expression of long non‐coding RNAs (lncRNAs) as a basic signature of various malignancies including gastric cancer (GC). LINC01225 has been shown to act as a hepatocellular carcinoma‐related gene, with its expression pattern and biological function not clarified in GC. Here, we verified that LINC01225 was up‐regulated in tumour tissues and plasma of GC. Analysis with clinicopathological information suggested that up‐regulation of LINC01225 was associated with advanced disease and poorer overall survival. Receiver operating characteristic (ROC) analysis showed that plasma LINC01225 had a moderate accuracy for diagnosis of GC. In addition, knockdown of LINC01225 led to retardation of cell proliferation, invasion and migration, and overexpression of LINC01225 showed the opposite effects. Mechanistic investigations showed that LINC01225 silencing inhibited epithelial‐mesenchymal transition (EMT) process and attenuated Wnt/β‐catenin signalling of GC. Furthermore, ectopic expression of Wnt1 or suppression of GSK‐3β abolished the si‐LINC01225‐mediated suppression against EMT, thereby promoting cell proliferation, invasion and migration of GC. In conclusion, LINC01225 promotes the progression of GC through Wnt/β‐catenin signalling pathway, and it may serve as a potential target or strategy for diagnosis or treatment of GC.  相似文献   

15.
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target.  相似文献   

16.
Inflammatory bowel disease (IBD) as a chronic recurrent disorder is characterized by mucosal immune response dysregulation, which is more prevalent in the youth. Adipose‐derived mesenchymal stem cells (ADMSCs) are the multipotent cells that can be effective in immune response regulation via cell–cell interaction and their secretions. In this study, the effects of ADMSCs and mesenchymal stem cell‐conditioned medium (MSC‐CM) were evaluated on dextran sulfate sodium (DSS)‐induced colitis in mice. Chronic colitis was induced in female C57BL/6 mice using 2% DSS in drinking water for three cycles; there were 4 days of DSS‐water administration that was followed by 7 days of DSS‐free water, in a cycle. ADMSCs, 106 cells per mouse, were injected intraperitoneally (IP), whereas the MSC‐CM injection was also performed six times from the last day of DSS in Cycle 1. Clinical symptoms were recorded daily. The colon pathological changes, cytokine levels, and regulatory T (Treg) cell percentages were then analyzed. After receiving ADMSCs and MSC‐CM in colitis mice, the clinical symptoms and disease activity index were improved and the survival rate was increased. The histopathological examination also showed tissue healing in comparison with the nontreated group. In addition, the increased level of transforming growth factor beta, increased percentage of Treg cells, increased level of interleukin (IL)‐10, and decreased level of IL‐17 were observed after the treatment. This study showed the regulatory effects of ADMSCs and MSC‐CM on inflammatory responses. Therefore, the use of ADMSCs and MSC‐CM can be introduced as a new and effective therapeutic approach for patients with colitis.  相似文献   

17.
18.
19.
The effects of β adrenergic receptors (β‐ARs) and p38 mitogen‐activated protein kinases (MAPK) pathways on cardiosphere‐derived cells (CDCs) are largely unknown. This study aimed to investigate the roles of β‐ARs and p38MAPK pathways on the proliferation, apoptosis, and differentiation capacity of CDCs. The CDCs were treated with β1‐AR blocker (Met group), β2‐AR antagonist (ICI group), and p38MAPK inhibitor (SB group), non‐selective β‐AR blocker (PRO group), and β‐AR agonist (ISO group). The viability, apoptotic rate and differentiation status of CDCs were determined by MST‐1 assay, flow cytometery, and Western blot, respectively. The CDCs viability significantly reduced in ICI group (all P < 0.05), and SB group had a significant high viability after 48 h treatment (P < 0.05). Compared with control group, all treated groups had a low apoptotic rate. After treatment for 72 h, ISO treatment elevated the expression of Nkx2.5, and could partially or fully attenuate the inhibitory effects of β‐AR antagonists and/or p38MAPK inhibitor. A similar overall trend of protein expression levels among all groups could be observed between protein pairs of cTnT and β1‐AR as well as c‐Kit and β2‐AR, respectively. These results suggested that β‐ARs and p38MAPK signaling pathways play crucial roles in the proliferation and differentiation of CDCs. Our findings should be helpful for better understanding the molecular mechanism underlying the physiological processes of CDCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号