首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tree squirrels (Tamiasciurus) are important selective agents on conifer reproductive strategies (Smith 1970, 1975). Although this is well established for wind-dispersed pines, the impact of tree squirrels on bird-dispersed pines has been largely ignored. I assessed the impact of tree squirrels on the allocation of reproductive energy in the bird-dispersed limber pine (Pinus flexilis) by comparing its cone and seed traits from three sites in the Rocky Mountains where tree squirrels (Tamiasciurus) are present to those from three mountain ranges in the Great Basin where tree squirrels are absent. As predicted, differences between the two regions in individual cone and seed traits are consistent with the hypothesis that tree squirrels are important selective agents on these traits. In the absence of tree squirrels, limber pine allocates more than twice as much energy to kernel compared with that invested in putative seed defenses (cone, resin, and seed coat) as does limber pine where tree squirrels are present. Such a large difference is particularly striking, because tree squirrels may have become extinct in the Great Basin in only the last 12,000 yr. Although many factors influence the allocation of energy to cones and seeds, no single factor other than the presence of tree squirrels is compatible with the large and consistent differences between limber pine in the Rocky Mountains and Great Basin. These results show that tree squirrels are an important constraint on the evolution of cone and seed traits that promote the dispersal of seeds by birds.  相似文献   

2.
Understanding the causes of variation in biotic interaction strength and phenotypic selection remains one of the outstanding goals of evolutionary ecology. Here we examine the variation in strength of interactions between two seed predators, common crossbills (Loxia curvirostra) and European red squirrels (Sciurus vulgaris), and mountain pine (Pinus uncinata) at and below tree limit in the Pyrenees, and how this translates into phenotypic selection. Seed predation by crossbills increased whereas seed predation by squirrels decreased with increasing elevation and as the canopy became more open. Overall, seed predation by crossbills averaged about twice that by squirrels, and the intensity of selection exerted by crossbills averaged between 2.6 and 7.5 times greater than by squirrels. The higher levels of seed predation by crossbills than squirrels were related to the relatively open nature of most of the forests, and the higher intensity of selection exerted by crossbills resulted from their higher levels of seed predation. However, most of the differences in selection intensity between crossbills and squirrels were the result of habitat features having a greater effect on the foraging behavior of squirrels than of crossbills, causing selection to be much lower for squirrels than for crossbills.  相似文献   

3.
Phenotypic selection that is sustained over time underlies both anagenesis and cladogenesis, but the conditions that lead to such selection and what causes variation in selection are not well known. We measured the selection exerted by three species of predispersal seed predators of lodgepole pine (Pinus contorta latifolia) in the South Hills, Idaho, and found that net selection on different cone and seed traits exerted by red crossbills (Loxia curvirostra) and cone borer moths (Eucosma recissoriana) over 10 years of seed crops was similar to that measured in another mountain range. We also found that the strength of selection increased as seed predation increased, which provides a mechanism for the correlation between the escalation of seed defenses and the density of seed predators. Red crossbills consume the most seeds and selection they exert accounts for much of the selection experienced by lodgepole pine, providing additional support for a coevolutionary arms race between crossbills and lodgepole pine in the South Hills. The third seed predator, hairy woodpeckers (Picoides villosus), consumed less than one‐sixth as many seeds as crossbills. Across the northern Rocky Mountains, woodpecker abundance and therefore selective impact appears limited by the elevated seed defenses of lodgepole pine.  相似文献   

4.
Intraspecific studies of selection on multiple traits of a plant's life history provide insight as to how the composite life history of an organism evolves. Current understanding of selection on plant life-history traits is deficient in three important areas: 1) the effects of selection through correlated traits, 2) the effects of selection on a trait throughout the plant's lifetime, and 3) spatial and temporal variation in selection on plant life-history traits among populations and years. This study documents spatial and temporal variation in selection on three life-history and two morphological traits for two natural populations of Chamaecrista fasciculata, a native summer annual. Life-history and morphological traits (date of seedling emergence, size at establishment, size prior to reproduction, date of initial flowering, and date of initial fruit maturation) varied significantly between sites and/or years. Selection on traits varied either spatially, between sites and among transects within one site, or temporally, between years. In addition, life-history traits were phenotypically correlated among themselves and with morphological traits; correlations were generally constant over time and space. Indirect selection caused changes in means and variances in traits not under direct selection, but which were correlated with traits under selection. Selection on date of emergence varied in direction and magnitude among different life-cycle stages, while selection on other traits varied only in magnitude among life stages of the plant. This study documents the complexity of the selective process and the importance of considering multiple life stages and traits when studying the evolution of life-history traits.  相似文献   

5.
Previous studies suggest that the evolution of increased caudal lamellae size to increase swimming speed was an adaptation of Enallagma damselflies for coexisting with large, predatory dragonflies in fishless lakes. To test whether dragonfly predation still exerts selection pressures for increased lamellae size, I performed a field experiment in which I manipulated the abilities of dragonfly larvae to inflict mortality on Enallagma boreale larvae and compared differences in lamellae size and shape between treatments. In cages where dragonflies were free to forage on damselflies, surviving E. boreale larvae had lamellae that were larger in lateral surface area, and that were wider relative to their length, as compared with larvae recovered from treatments in which dragonflies were not permitted to forage on damselflies. Selection differentials of about 0.25 phenotypic standard deviation units were measured for both of these characters. These results indicate that dragonfly predation still exerts significant selection pressures on damselfly antipredator adaptations. The results of this study are discussed in the context of studies of adaptation.  相似文献   

6.
Multiple-regression techniques for measuring phenotypic selection have been used in a large number of recent field studies. One benefit of this technique is its ability to discern the direct action of selection on traits by removing effects of correlated traits. However, covariation among traits expressed at different stages in an organism's life history is often poorly estimated because individuals that die before reaching adulthood cannot be measured as adults. Accurate estimates of trait covariances are necessary for the correct interpretation of the direct action of selection on a trait. If phenotypic characters expressed at different life-history stages are of interest, and mortality occurs between stages, the components of the selection model will be biased by not including those individuals that died (the “invisible fraction”).  相似文献   

7.
Gene flow is often considered to be one of the main factors that constrains local adaptation in a heterogeneous environment. However, gene flow may also lead to the evolution of phenotypic plasticity. We investigated the effect of gene flow on local adaptation and phenotypic plasticity in development time in island populations of the common frog Rana temporaria which breed in pools that differ in drying regimes. This was done by investigating associations between traits (measured in a common garden experiment) and selective factors (pool drying regimes and gene flow from other populations inhabiting different environments) by regression analyses and by comparing pairwise FST values (obtained from microsatellite analyses) with pairwise QST values. We found that the degree of phenotypic plasticity was positively correlated with gene flow from other populations inhabiting different environments (among‐island environmental heterogeneity), as well as with local environmental heterogeneity within each population. Furthermore, local adaptation, manifested in the correlation between development time and the degree of pool drying on the islands, appears to have been caused by divergent selection pressures. The local adaptation in development time and phenotypic plasticity is quite remarkable, because the populations are young (less than 300 generations) and substantial gene flow is present among islands.  相似文献   

8.
A classic example of natural selection, that of color-pattern variation in Lake Erie island populations of water snakes, was reexamined to overcome shortcomings resulting from classification of snakes into discrete color-pattern categories and use of cross-sectional data. Four continuously varying color-pattern components (DB, the number of dorsal blotches; LB, the number of lateral blotches; ROWS, the height of lateral blotches measured in scale rows; and VEXT, the extent of ventral pigmentation) were analyzed. Patterns of natural selection were predicted from the relationship between color-pattern scores and independent measures of relative crypsis. Tests for natural selection were carried out using longitudinal data on neonate to juvenile-aged snakes and cross-sectional data on juvenile to adult-aged snakes. As predicted, the form of selection differed between younger and older age classes of snakes: selection resulted in a reduction in DB and LB among neonate and juvenile snakes but had little influence on color-pattern components in older snakes. The correspondence between observed patterns of natural selection and predictions based on the relationship between color-pattern scores and relative crypsis supports the hypothesis that differential predation by visual predators on younger age classes of snakes is the mechanism of selection. Gene flow from mainland populations or the initial lack of an allele necessary for reduced pattern may explain why selection has not resulted in greater differentiation between island and mainland populations.  相似文献   

9.
Phenotypic variation is ubiquitous in nature and a precondition for adaptive evolution. However, theory predicts that the extent of phenotypic variation should decrease with increasing strength of selection on a trait. Comparative analyses of trait variability have repeatedly used this expectation to infer the type or strength of selection. Yet, the suggested influence of selection on trait variability has rarely been tested empirically. In the present study, I compare estimates of sexual selection strength and trait variability from published data. I constricted the analysis to acoustic courtship traits in amphibians and insects with known variability and corresponding results of female binary choice experiments on these traits. Trait variability and strength of sexual selection were significantly correlated, and both were correlated with signal duration. Because traits under stronger selection had lower variation even after the effect of signal duration was eliminated, I conclude that traces of the strength of selection can be observed with respect to variation of acoustic signaling traits in insects and amphibians. The analysis also shows that traits under stabilizing selection have significantly lower phenotypic variability than traits under directional selection.  相似文献   

10.
Epigenetic effects attributed to genomic imprinting are increasingly recognized as an important source of variation in quantitative traits. However, little is known about their relative contribution to phenotypic variation compared to those of additive and dominance effects, and almost nothing about their role in phenotypic evolution. Here we address these questions by investigating the relative contribution of additive, dominance, and imprinting effects of quantitative trait loci (QTL) to variation in "early" and "late" body weight in an intercross of mice selected for divergent adult body weight. We identified 18 loci on 13 chromosomes; additive effects accounted for most of the phenotypic variation throughout development, and imprinting effects were always small. Genetic effects on early weight showed more dominance, less additive, and, surprisingly, less imprinting variation than that of late weight. The predominance of additivity of QTL effects on body weight follows the expectation that additive effects account for the evolutionary divergence between selection lines. We hypothesize that the appearance of more imprinting effects on late body weight may be a consequence of divergent selection on adult body weight, which may have indirectly selected for alleles showing partial imprinting effects due to their associated additive effects, highlighting a potential role of genomic imprinting in the response to selection.  相似文献   

11.
Because interactions among plants are spatially local, the scale of environmental heterogeneity can have large effects on evolutionary dynamics. However, very little is known about the spatial patterns of variation in fitness and the relative magnitude of spatial and temporal variation in selection. Replicates of 12 genotypes of Erigeron annuus (Asteraceae) were planted in 288 locations within a field, separated by distances of 0.1 to 30.0 m, and replicated in two years. In a given year, most spatial variation in relative fitness (genotype-environment [G × E] interactions for fitness) occurred over distances of only 50 cm. Year effects were as large or larger than the spatial variation in fitness; in particular there was a large, three-way, genotype-year-environment interaction at the smallest spatial scale. The genetic correlation of fitness across years at a given location was near zero, 0.03. Thus, the relative fitness of genotypes is spatially unpredictable and a map of the selective environment has constantly shifting locations of peaks and valleys. Including measurements of soil nutrients as covariates in the analysis removed most of the spatial G × E interaction. Vegetation and microtopography had no effect on the G × E terms, suggesting that differential response to soil nutrients is the cause of spatial variation in fitness. However, the slope of response to NH4 and P04 was negative; therefore the soil nutrients are probably just indicators of other, unknown, environmental factors. We explored via simulation the evolutionary consequences of spatial and temporal variation in fitness and showed that, for this system, the spatial scale of variation was too fine grained (by a factor of 3 to 5) to be a powerful force maintaining genetic variation in the population. The inclusion of both spatial and temporal variation in fitness actually reduced the coexistence of genotypes compared to pure spatial models. Thus the presence of spatial or temporal variation in selection does not guarantee that it is an effective evolutionary force maintaining diversity. Instead the pattern of selection favors generalist genotypes.  相似文献   

12.
A seed predator drives the evolution of a seed dispersal mutualism   总被引:1,自引:0,他引:1  
Although antagonists are hypothesized to impede the evolution of mutualisms, they may simultaneously exert selection favouring the evolution of alternative mutualistic interactions. We found that increases in limber pine (Pinus flexilis) seed defences arising from selection exerted by a pre-dispersal seed predator (red squirrel Tamiasciurus hudsonicus) reduced the efficacy of limber pine's primary seed disperser (Clark's nutcracker Nucifraga columbiana) while enhancing seed dispersal by ground-foraging scatter-hoarding rodents (Peromyscus). Thus, there is a shift from relying on primary seed dispersal by birds in areas without red squirrels, to an increasing reliance on secondary seed dispersal by scatter-hoarding rodents in areas with red squirrels. Seed predators can therefore drive the evolution of seed defences, which in turn favour alternative seed dispersal mutualisms that lead to major changes in the mode of seed dispersal. Given that adaptive evolution in response to antagonists frequently impedes one kind of mutualistic interaction, the evolution of alternative mutualistic interactions may be a common by-product.  相似文献   

13.
Monogamy is often presumed to constrain mating variance and restrict the action of sexual selection. We examined the reproductive patterns of a monogamous population of smallmouth bass (Micropterus dolomieui), and attempted to identify sources of within-season fitness variation among females and known-age males. Many males did not acquire a nest site, and many territorial males were unsuccessful in acquiring a mate. The likelihood that territorial males mated depended on several aspects of nest sites. Mated males of age three were larger than the average size of age-three males in the population. The mean sizes of age-four and age-five mated males were not different from the average of same-age males in the population. Thus, selection resulting from the acquisition of a mate favored large size among only age-three males. Timing of nest construction and breeding among territorial males was negatively related to male size and did not depend on male age after taking male size into account. Indirect evidence (numbers of eggs deposited in nests) suggests that the timing of spawning among females was also negatively related to female size. Fertility selection favored early reproduction within the season by males of all ages, but large male size was favored among only age-four males. The combined early breeding of fecund females and female mate choice of large males may explain the positive correlation between the size of age-four males and the number of eggs acquired. Despite large differences of female fecundity, however, the variance of relative mate number contributed about two times more than the variance of relative fertility among females to the total variance of relative fitness within each sex.  相似文献   

14.
In the hummingbird-pollinated herb Ipomopsis aggregata, selection through male function during pollination favors wide corolla tubes. We explored the mechanisms behind this selection, using phenotypic selection analysis to compare effects of corolla width on two components of male pollination success, pollinator visit rate and pollen exported per visit. During single visits by captive hummingbirds, flowers with wider corollas exported more pollen, and more dye used as a pollen analogue, to stigmas of recipient flowers. Corolla width was less strongly related to visit rate in the field, and had no direct effect on visit rate after nectar production and corolla length were controlled for. Moreover, the phenotypic selection differential was 80% higher for the effect on pollen exported per visit, suggesting that this is the more important mechanism of selection.  相似文献   

15.
Heterologous hybridization of chloroplast DNA (cpDNA) involving 30 endonucleaseprobe combinations was used to analyze cpDNA variation in multiple individuals and populations of Pinus tabulaeformis (Carr.), Pinus yunnanensis (Franchèt) and Pinus massoniana (Lamb.). Restriction fragment patterns detected by several combinations distinguished among the three species. The obtained cpDNA markers were subsequently used to examine cpDNA variation of Pinus densata (Masters), a putative tertiary hybrid between P. tabulaeformis and P. yunnanensis. The analysis demonstrated that P. densata populations harbor three different haplotypes. Two of these haplotypes are characteristic of P. tabulaeformis and P. yunnanensis. However, the third haplotype found in P. densata appears to be absent in other extant Asian Pinus species. It is suggested that the observed cpDNA composition of P. densata populations is a result of past hybridization involving P. tabulaeformis, P. yunnanensis, and a third unknown or extinct taxon. Chloroplast DNA polymorphism in P. densata was much greater than that for nuclear allozyme markers in this and the other Pinus species. Population differentiation was also substantial in P. densata and exceeded that for allozyme markers. In contrast, no cpDNA polymorphism was detected in populations of P. tabulaeformis, P. yunnanensis, and P. massoniana. The study suggests that interspecific gene exchange may lead to the creation of stable cpDNA polymorphism in conifer hybrids.  相似文献   

16.
Variation in the number of vertebrae is widespread in fishes, and is partly genetic in origin. The adaptive significance of this variation was tested by exposing larvae of the threespine stickleback (Gasterosteus aculeatus) to predation by sunfish (Lepomis gibbosus). Two vertebral characters were considered: the total number (VN) and the ratio of abdominal to caudal vertebrae (VR). Predation was selective for both characters, but selection was more directly related to VR than to VN. The direction of selection depended on larval length: as length increased, optimal VR decreased. Total selection for VR was a combination of direct selection and an indirect effect of selection acting on a correlated trait, the ratio of precaudal to caudal length. Direct and indirect selection were in opposing directions at a given larval length. Variation in vertebral number may be maintained in populations partly because the strength of selection is reduced by opposing directions between direct and indirect selection, and between total selection at different larval lengths.  相似文献   

17.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

18.
The importance of infrequent events for both adaptive evolution and the evolution of species interactions is largely unknown. We investigated how the infrequent production of large seed crops (masting) of a bird-dispersed tree (whitebark pine, Pinus albicaulis) influenced phenotypic selection exerted by its primary avian seed predator-disperser, the Clark's nutcracker (Nucifraga columbiana). Selection was not evident during common years of low seed abundance, whereas it was replicated among areas and favoured traits facilitating seed dispersal during infrequent years of high seed abundance. Since nutcrackers act mostly as seed predators during small seed crops but as seed dispersers during the largest seed crops, trees experienced strong selection from nutcrackers only during infrequent years when the interaction was most strongly mutualistic. Infrequent events can thus be essential to both adaptive evolution and the evolutionary dynamics of species interactions.  相似文献   

19.
Natural fluctuations in environmental conditions are likely to induce variation in the intensity or direction of natural selection. A long-term study of the insect, Eurosta solidaginins Fitch (Diptera; Tephritidae), which induces stem galls on the perennial herb Solidago altissima (Asteraceae) was performed to explore the patterns of variation in phenotypic selection. The intensity of selection imposed by parasitoids and predators on gallmaking larvae, for gall size, was measured across 16 populations over the course of 4 generations, for a total of 64 population-generations. Directional selection was quantified by i, the selection intensity, and variance selection by j‘, a measure of the intensity of selection on phenotypic variance. Size-dependent attack by parasitoids caused upward directional selection (mean ip = 0.42; SE = 0.023), while size-dependent bird attack favored larvae that induced smaller galls (mean ib = -0.07; SE = 0.013. The mean net directional selection intensity was 0.35 (SE = 0.030), which indicates that insects inducing larger galls are generally favored by selection. The opposing patterns of size-dependent attack resulted in stabilizing selection in half the population generations, with an overall average. j‘ of -0.11 (SE = 0.078). The magnitude of directional selection was strongly influenced by the population mean gall size and weakly by the optimal gall size. The intensity of variance selection was strongly influenced by the shape of the fitness function, with sigmoidal and Gaussian-like shapes causing greater depletion of phenotypic variance.  相似文献   

20.
The multivoltine bruchid Kytorhinus sharpianus shows seasonal phenotypic plasticity in adult longevity, the preoviposition period, and the number of eggs laid without feeding between the diapausing and nondiapausing generations. This study compared the norms of reaction in three life-history traits between the univoltine Aomori and multivoltine Mitsuma populations. The directions of response in the norms of reaction were similar in both populations, although their response curves differed between populations. This result indicated a potential for variation in seasonal phenotypic plasticity in the univoltine population. However, the variation in the norms of reaction was small in both populations, suggesting strong selection pressure on the plasticity in the multivoltine population. These results also suggest that the univoltine Aomori population may have originated from a multivoltine population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号