首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarizes our experiments on the significance of the -subunit in the functional expression of Na+/K+-ATPase. The -subunit acts like a receptor for the -subunit in the biogenesis of Na+/K+-ATPase and facilitates the correct folding of the -subunit in the membrane. The -subunit synthesized in the absence of the -subunit is subjected to rapid degradation in the endoplasmic reticulum. Several assembly sites are assigned in the sequence of the -subunit from the cytoplasmic NH2-terminal domain to the extracellular COOH-terminus: the NH2-terminal region of the extracellular domain, the conservative proline in the third disulfide loop, the hydrophobic amino acid residues near the COOH-terminus and the cysteine residues forming the second and the third disulfide bridges. Upon assembly, the -subunit confers a resistance to trypsin on the -subunit. The conformations induced in the -subunit of Na+/K+-ATPase by Na+/K+- and H+/K+-ATPase -subunits are somehow different from each other and are named the NK-type and KH-type, respectively. The extracellular domain of the -subunit is involved in the folding of the -subunit leading to trypsin-resistant conformations. The sequences from Cys150 to the COOH-terminus of the Na+/K+-ATPase -subunit and from Ile89 to the COOH–terminus of the H+/K+-ATPase -subunit are necessary to form trypsin-resistant conformations of the NK- and HK-type. respectively. The first disulfide loop of the extracellular domain of the -subunits is critical in the expression of functional Na+/K+-ATPase.  相似文献   

2.
Na+, K+-ATPase is ubiquitously expressed in the plasma membrane ofall animal cells where it serves as the principal regulator of intracellularion homeostasis. Na+, K+-ATPase is responsible for generating andmaintaining transmembrane ionic gradients that are of vital importance forcellular function and subservient activities such as volume regulation, pHmaintenance, and generation of action potentials and secondary activetransport. The diversity of Na+, K+-ATPase subunit isoforms andtheir complex spatial and temporal patterns of cellular expression suggestthat Na+, K+-ATPase isozymes perform specialized physiologicalfunctions. Recent studies have shown that the subunit isoformspossess considerably different kinetic properties and modes of regulationand the subunit isoforms modulate the activity, expression and plasmamembrane targeting of Na+, K+-ATPase isozymes. This review focuseson recent developments in Na+, K+-ATPase research, and in particular reportsof expression of isoforms in various tissues and experiments aimed atelucidating the intrinsic structural features of isoforms important forNa+, K+-ATPase function.  相似文献   

3.
Functionally active preparations of Na+,K+-ATPase isozymes from calf brain that contain catalytic subunits of three types (1, 2, and 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of their membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K+-ATPase of the 11 type and minor amounts of isozymes of the 22(1) and the 31(2) type. The axolemma contains 21 and 31 isozymes. A carbohydrate analysis indicated that 11 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the 1 isoform. An enhanced sensitivity of the 3 catalytic subunit of Na+,K+-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 Y493 was localized (residue numbering is that of the human 3 subunit). This sequence corresponds to one of the regions of the greatest variability in 1-, 2-, 3-, and 4-subunits, but at the same time, it is characteristic of the 3 isoforms of various species. The presence of the 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K+-ATPase 31 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the 3 catalytic subunit was shown.  相似文献   

4.
Previous results showed that Na+/K+-ATPase may have a functional relationship with the neurotransmitter serotonin which activates the glial sodium pump in the rat brain. Both the reaction rate (V) of Na+/K+-ATPase activity and [3H]ouabain binding were significantly increased in the presence of serotonin. It is not known, however, which isoform is involved in the Na+/K+-ATPase response to serotonin and its regional distribution. Quantitative autoradiography of [3H]ouabain binding to rat brain slices was employed at different [3H]ouabain concentrations in order to gain information on both the distribution and the possible isoform involved. The results showed that 1500 nM [3H]ouabain binding was sensitive to serotonin 10–3 M and significantly increased in the following brain regions: frontal cortex, areas CA1, CA2, and CA3 of the hippocampus, presubiculum, zona incerta, caudate putamen and the amygdaloid area, confirming and extending previous results. An effect of serotonin on brain but not kidney tissue at high, 1500 nM, and the lack of effect at low, 50 nM [3H]ouabain concentrations, strongly suggests the participation of the 2 isoform in the response of the pump to the neurotransmitter. Glial cells showed stimulation of ouabain binding by serotonin at ouabain concentrations above 350 nM. The present results open interesting questions related to the brain regions involved and the K+ handling by the glial 2 isoform of the pump.  相似文献   

5.
Regulation of the Na+/K+-ATPase by insulin: Why and how?   总被引:4,自引:0,他引:4  
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits ( and ) each expressed in several isoforms. Many hormones regulate Na+/K+ -ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed.  相似文献   

6.
Changes in demands for Na+ transport alter expression of the Na+,K+-ATPase subunit isoforms. In skeletal muscle, the effects of these changes on expression the 2 isoform, the major isoform expressed in differentiated muscle cell, is not known. Therefore, this study examines regulation of the -subunit isoforms by Na+ in the C2C12 skeletal muscle cell that expresses the 1 and 2 isoforms. Western blot analysis showed that in differentiating C2C12 muscle cell, but not in undifferentiated myoblast, veratridine, a Na+ channel activator, greatly increased expression of the 2 isoform; expression of 1 was unaltered. Because the level of -actinin was unaltered, the data suggest that veratridine treatment did not significantly alter the progression of cell differentiation. Furthermore, a reduction in Na+ transport by tetrodotoxin again failed to alter expression of a1. Thus, in C2C12 skeletal muscle cell, changes in Na+ transport alters expression of the 2, but not the 1 isoform. These results differ from those observed previously in muscle cells that express only the 1 isoform. Because mammalian skeletal muscle expresses both the 1- and 2-subunit isoforms, the differential regulation that was observed may be physiologically relevant in these muscle cells in vivo.  相似文献   

7.
Functionally active Na2+,K2+-ATPase isozymes containing three types of the catalytic subunits (1, 2, and 3) were obtained from calf brain by two methods: selective removal of contaminating proteins according to Jorgensen (1974) and selective solubilization of the enzyme with subsequent reformation of the membrane structure according to Esmann (1988). All preparations were characterized with respect to ouabain-inhibition constants. The presence of the cytoskeleton protein tubulin (3 isoform) in the high-molecular-weight complex of Na2+,K2+-ATPase 31 isozyme from brain stem axolemma and the junction between Na2+,K2+-ATPase 3 subunit and tubulin 3 subunit are shown for the first time.  相似文献   

8.
A comparative localization of Na+,K+-ATPase and ouabain-sensitive H+,K+-ATPase in rat skin was performed using in situ RNA hybridization and immunohistochemistry. Na+,K+-ATPase was predominantly detected in the basal layer of the epithelium, whereas the ouabain-sensitive H+,K+-ATPase, in the granular and prickle cell layers. The genes of these ATPases are thus expressed in epithelial cells at different stages of their development. The hypothesis was advanced that the ouabain-sensitive H+,K+-ATPase is involved in maintaining the skin pH value. The probes specific to the mRNAs of the full-size -subunit of the ouabain-sensitive H+,K+-ATPase and its truncated form were used to establish a similar distribution of both mRNA variants in skin.  相似文献   

9.
The objective of the present study was to investigate the in vitro effects of octanoic acid, which accumulates in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and in Reye syndrome, on key enzyme activities of energy metabolism in the cerebral cortex of young rats. The activities of the respiratory chain complexes I–IV, creatine kinase, and Na+, K+-ATPase were evaluated. Octanoic acid did not alter the electron transport chain and creatine kinase activities, but, in contrast, significantly inhibited Na+, K+-ATPase activity both in synaptic plasma membranes and in homogenates prepared from cerebral cortex. Furthermore, decanoic acid, which is also increased in MCAD deficiency, and oleic acid strongly reduced Na+, K+-ATPase activity, whereas palmitic acid had no effect. We also examined the effects of incubating glutathione and trolox (-tocopherol) alone or with octanoic acid on Na+, K+-ATPase activity. Tested compounds did not affect Na+, K+-ATPase activity by itself, but prevented the inhibitory effect of octanoic acid. These results suggest that inhibition of Na+, K+-ATPase activity by octanoic acid is possibly mediated by oxidation of essential groups of the enzyme. Considering that Na+, K+-ATPase is critical for normal brain function, it is feasible that the significant inhibition of this enzyme activity by octanoate and also by decanoate may be related to the neurological dysfunction found in patients affected by MCAD deficiency and Reye syndrome.  相似文献   

10.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

11.
Microvillar cells (MCs) have been identified in the olfactory epithelium of various mammalian species from rodents to humans. Studies on properties and functions of MCs to date have yielded partially controversial results, supporting alternatively an epithelial or a neuronal nature of these cells. In the present study, single and double immunolabeling investigations were carried out using antibodies against cytoskeletal and integral membrane proteins in order to further characterize MCs in rat and mouse olfactory epithelium. Application of antibodies against ankyrin (ANK), a protein that links integral membrane proteins to the submembrane cytoskeleton, led to intense labeling of the basolateral membranes of numerous cells with characteristic MC morphology. ANK-immunoreactive (ir) cells bore an apical tuft of -actin-ir microvilli, were filled with cytokeratin 18 (CK18)-ir filamentous network, and extended a basal process that appeared to end above the basal membrane. Immunoreactions for villin, an actin-crosslinking protein particularly prominently expressed in brush cells in the gastrointestinal and respiratory tract epithelia, and for the -subunit of sodium-potassium ATPase (Na+, K+-ATPase), revealed that ANK-ir MCs fall into two subpopulations. The less frequent type I MCs displayed villin immunoreactivity in their apical microvilli and underneath the basolateral membranes; the more numerous type II MCs were negative for villin but possessed intense basolateral immunoreactivity for Na+, K+-ATPase. Strong reactivity for the epithelial-type integral membrane protein of adherens junctions, E-Cadherin, was localized in basolateral membranes of both types of MCs. Our results support an epithelial nature of ANK-ir MCs in rat and mouse olfactory epithelium. Type I MCs strongly resemble brush cells in their immunocytochemical characteristics, namely, their ANK reactivity, CK18 reactivity, and villin reactivity. The intense Na+, K+-ATPase reactivity of type II MCs implicates these cells in transport processes.  相似文献   

12.
Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.  相似文献   

13.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

14.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

15.
We have previously reported that Na+,K+-ATPase of nerve ending membranes is stimulated by catecholamines only in the presence of a brain soluble fraction. The filtration of this soluble fraction through Sephadex G-50 permitted the separation of two extracts of maximal UV absorbance (peaks I and II) which showed different effects on ATPases. Peak I stimulated both Na+,K+-ATPase and Mg2+-ATPase activities and peak II inhibited Na+,K+-ATPase activity. We have now studied the activity of ATPases in the presence of the whole eluate obtained from the Sephadex G-50 column. It was observed that maximal effects on ATPases were obtained with peaks I and II. Peak I and peak II fractions were unable to modify the activity of acetylcholinesterase or 5-nucleotidase present in the synaptosomal membranes. The stimulatory effect of peak I on ATPases was concentration dependent (up to 1100), it was stable at different pHs and it was reverted by catecholamines. The inhibitory effect of peak II on Na+,K+-ATPase was concentration dependent (up to 150,000), it was stable only at acid pH, and it was partially reverted by catecholamines. These findings indicate that the factors responsible for the effects of peaks I and II have different properties and that their actions on ATPases show enzyme specifity.  相似文献   

16.
ATPase melting has been studied by circular dichroism and differential scanning microcalorimetry. Decomposition of the -helix of H+-ATPase (in which about 80% of the peptide groups of the enzyme are involved) following thermal treatment is shown to proceed gradually, beginning with room temperature. Effect of nucleotides upon melting is detected in the range of 20–40 C. Above 40 C, the pattern of thermal decomposition of the three-dimensional structure of H+-ATPase is independent of the nature of nucleotides present. Highly stable -helical sites have been found in the enzyme molecule. Possible mechanism of formation of such sites is discussed, and the results obtained are compared with data on thermal stability of ATPase from thermophilic bacteria. Structural changes in the molecule following thermal treatment are compared with ATPase activity changes under similar experimental conditions.  相似文献   

17.
The cRNA for Torpedo californica Na+/K+-ATPase -subunit (cRNA) was injected into Xenopus oocytes alone or with the cRNA for the Na+/K+-ATPase -subunit (cRNA). When cRNA was injected alone, the amount of the -subunit that accumulated in oocytes increased with increasing amounts of injected cRNA. When cRNA and cRNA were injected simultaneously, less -subunit accumulated than when cRNA was injected alone, whereas the Na+/K+-ATPase activity increased markedly. The decrease in the accumulation of the -subunit was dose-dependent upon the cRNA. The mutant -subunit unable to assemble with the -subunit accumulated in oocytes independently of cRNA, suggesting that post-translational control mechanisms may serve to reduce the accumulation of the -subunit.This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (No. 05259226, No. 06454149).  相似文献   

18.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   

19.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

20.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号