首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.  相似文献   

2.
Human BRCA2, a breast and ovarian cancer suppressor, binds to the DNA recombinase RAD51 through eight conserved BRC repeats, motifs of approximately 30 residues, dispersed across a large region of the protein. BRCA2 is essential for homologous recombination in vivo, but isolated BRC repeat peptides can prevent the assembly of RAD51 into active nucleoprotein filaments in vitro, suggesting a model in which BRCA2 sequesters RAD51 in undamaged cells, and promotes recombinase function after DNA damage. How BRCA2 might fulfill these dual functions is unclear. We have purified a fragment of human BRCA2 (BRCA2(BRC1-8)) with 1127 residues spanning all 8 BRC repeats but excluding the C-terminal DNA-binding domain (BRCA2(CTD)). BRCA2(BRC1-8) binds RAD51 nucleoprotein filaments in a ternary complex, indicating it may organize RAD51 on DNA. Human RAD51 is relatively ineffective in vitro at strand exchange between homologous DNA molecules unless non-physiological ions like NH4+ are present. In an ionic milieu more typical of the mammalian nucleus, BRCA2(BRCI-8) stimulates RAD51-mediated strand exchange, suggesting it may be an essential co-factor in vivo. Thus, the human BRC repeats, embedded within their surronding sequences as an eight-repeat unit, mediate homologous recombination independent of the BRCA2(CTD) through a previously unrecognized role in control of RAD51 activity.  相似文献   

3.
In humans, the interactions between the breast cancer susceptibility protein, BRCA2, and the RAD51 recombinase are essential for DNA repair by homologous recombination (HR), failure of which can predispose to cancer. The interactions occur through conserved BRC repeat motifs, encoded in BRCA2, binding directly to RAD51. Here, we describe full and partial BRCA2 homologues from a wide range of eukaryotes, including Drosophila melanogaster and two Plasmodium species. The crystal structure of the human BRC4-RAD51 complex allows identification of residues that are important for protein-protein interaction, and defines interaction sequence fingerprints for the BRC repeat and for RAD51. These allow us to predict that most eukaryotic RAD51 and BRC repeat orthologues should be capable of mutual interactions. We find no evidence for the presence of BRC repeats in yeast, Archaea and bacteria, and their RAD51 orthologues do not fulfil the criteria for binding the BRC repeat. Similarly, human RAD51 paralogues, including RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1, are not predicted to bind the BRC repeat. Conservation of the BRC repeat and RAD51 sequence fingerprints across a wide range of eukaryotic species substantiates the functional significance of the BRCA2-RAD51 interactions. The idea of multiple BRC repeats with binding specificity towards RAD51 leads us to suggest a possible model for the participation of BRCA2 in RAD51 nucleoprotein filament formation.  相似文献   

4.
The human breast cancer susceptibility gene BRCA2 is required for the regulation of RAD51-mediated homologous recombinational repair. BRCA2 interacts with RAD51 monomers, as well as nucleoprotein filaments, primarily though the conserved BRC motifs. The unrelated C-terminal region of BRCA2 also interacts with RAD51. Here we show that the BRCA2 C terminus interacts directly with RAD51 filaments, but not monomers, by binding an interface created by two adjacent RAD51 protomers. These interactions stabilize filaments so that they cannot be dissociated by association with BRC repeats. Interaction of the BRCA2 C terminus with the RAD51 filament causes a large movement of the flexible RAD51 N-terminal domain that is important in regulating filament dynamics. We suggest that interactions of the BRCA2 C-terminal region with RAD51 may facilitate efficient nucleation of RAD51 multimers on DNA and thereby stimulate recombination-mediated repair.  相似文献   

5.
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.  相似文献   

6.
The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR). Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations.  相似文献   

7.
To clarify RAD51 interactions controlling homologous recombination, we report here the crystal structure of the full-length RAD51 homolog from Pyrococcus furiosus. The structure reveals how RAD51 proteins assemble into inactive heptameric rings and active DNA-bound filaments matching three-dimensional electron microscopy reconstructions. A polymerization motif (RAD51-PM) tethers individual subunits together to form assemblies. Subunit interactions support an allosteric 'switch' promoting ATPase activity and DNA binding roles for the N-terminal domain helix-hairpin-helix (HhH) motif. Structural and mutational results characterize RAD51 interactions with the breast cancer susceptibility protein BRCA2 in higher eukaryotes. A designed P.furiosus RAD51 mutant binds BRC repeats and forms BRCA2-dependent nuclear foci in human cells in response to gamma-irradiation-induced DNA damage, similar to human RAD51. These results show that BRCA2 repeats mimic the RAD51-PM and imply analogous RAD51 interactions with RAD52 and RAD54. Both BRCA2 and RAD54 may act as antagonists and chaperones for RAD51 filament assembly by coupling RAD51 interface exchanges with DNA binding. Together, these structural and mutational results support an interface exchange hypothesis for coordinated protein interactions in homologous recombination.  相似文献   

8.
In the repair of double-strand breaks of DNA by homologous recombination the recombinase protein RAD51 has its functions controlled by the breast cancer susceptibility protein BRCA2. BRCA2 can bind to RAD51 via the BRC repeats BRC1–BRC8, which are eight conserved sequence motifs in BRCA2 of about 35 amino acids. We have carried out a series of extensive unrestrained atomistic molecular dynamics (MD) simulations in explicit water for a total time period of 248 ns, in order to study the dynamical behaviour and conformations of the complexes between the hairpin loop region of the BRC repeats and RAD51. Our simulations have allowed us to investigate the conformations adopted by the BRC repeats both while bound to RAD51 and while isolated. These conformations are rationalised through an analysis of the inter- and intra-molecular backbone and side chain bonding interactions in all the eight human BRC repeats as well as in a single-point mutation of BRC4. The differences in sequence result in differences in the interactions between the BRC repeats and the RAD51 protein but these do not appear to disrupt the binding in any of the BRC–RAD51 complexes as there are always a number of key residues remaining which allow a sufficient number of interactions to stabilise the complexes.  相似文献   

9.
The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ~35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues, we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum mechanical first principles calculations with the linear-scaling density functional code onetep. Our findings not only reveal how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the analysis of protein-protein interactions for chemical biology and molecular therapeutics.  相似文献   

10.
The evolutionarily conserved Hop2-Mnd1 complex is a key cofactor for the meiosis-specific recombinase Dmc1. However, emerging evidence has revealed that Hop2-Mnd1 is expressed in somatic tissues, primary human fibroblasts and cell lines, and that it functions in conjunction with the Rad51 recombinase to repair damaged telomeres via the alternate lengthening of telomeres mechanism. Here, we reveal how distinct DNA-binding activities of Hop2-Mnd1 mediate the stabilization of the RAD51-ssDNA presynaptic filament or stimulate the homologous DNA pairing reaction. We have also endeavored to define the interface that governs the assembly of the higher order complex of Hop2-Mnd1 with RAD51. Unexpectedly, we find that ATP enhances the interaction between Hop2-Mnd1 and RAD51, and that both Hop2 and Mnd1 are involved in RAD51 interaction via their C-terminal regions. Importantly, mutations introduced into these Hop2 and Mnd1 domains, including the HOP2 p.del201Glu mutation present in a patient of XX ovarian dysgenesis, diminish the association and functional synergy of Hop2-Mnd1 with both RAD51 and DMC1. Our findings help delineate the intricate manner in which Hop2-Mnd1 engages and functions with RAD51 and DMC1 in mammalian cells and speak to the possible cause of XX ovarian dysgenesis.  相似文献   

11.
Meiotic crossover(CO) formation between homologous chromosomes ensures their subsequent proper segregation and generates genetic diversity among offspring. In maize, however, the mechanisms that modulate CO formation remain poorly characterized. Here, we found that both maize BREAST CANCER SUSCEPTIBILITY PROTEIN 2(BRCA2) and AAA-ATPase FIDGETIN-LIKE-1(FIGL1)act as positive factors of CO formation by controlling the assembly or/and stability of two conserved DNA recombinases RAD51 and DMC1 filame...  相似文献   

12.
Human RAD51 protein catalyzes DNA pairing and strand exchange reactions that are central to homologous recombination and homology-directed DNA repair. Successful recombination/repair requires the formation of a presynaptic filament of RAD51 on ssDNA. Mutations in BRCA2 and other proteins that control RAD51 activity are associated with human cancer. Here we describe a set of mutations associated with human breast tumors that occur in a common structural motif of RAD51. Tumor-associated D149N, R150Q and G151D mutations map to a Schellman loop motif located on the surface of the RecA homology domain of RAD51. All three variants are proficient in DNA strand exchange, but G151D is slightly more sensitive to salt than wild-type (WT). Both G151D and R150Q exhibit markedly lower catalytic efficiency for adenosine triphosphate hydrolysis compared to WT. All three mutations alter the physical properties of RAD51 nucleoprotein filaments, with G151D showing the most dramatic changes. G151D forms mixed nucleoprotein filaments with WT RAD51 that have intermediate properties compared to unmixed filaments. These findings raise the possibility that mutations in RAD51 itself may contribute to genome instability in tumor cells, either directly through changes in recombinase properties, or indirectly through changes in interactions with regulatory proteins.  相似文献   

13.
The breast and ovarian cancer suppressor protein BRCA2 controls the RAD51 recombinase in reactions that lead to homologous DNA recombination (HDR). BRCA2 binds RAD51 via eight conserved BRC repeat motifs of approximately 35 amino acids, each with a varying capacity to bind RAD51. BRC repeats both promote and inhibit RAD51 assembly on different DNA substrates to regulate HDR, but the structural basis for these functions is unclear. Here, we demarcate two tetrameric clusters of hydrophobic residues in the BRC repeats, interacting with distinct pockets in RAD51, and show that the co-location of both modules within a single BRC repeat is necessary for BRC–RAD51 binding and function. The two modules comprise the sequence FxxA, known to inhibit RAD51 assembly by blocking the oligomerization interface, and a previously unrecognized tetramer with the consensus sequence LFDE, which binds to a RAD51 pocket distinct from this interface. The LFDE motif is essential in BRC repeats for modes of RAD51 binding both permissive and inhibitory to RAD51 oligomerization. Targeted insertion of point mutations in RAD51 that disrupt the LFDE-binding pocket impair its assembly at DNA damage sites in living cells. Our findings suggest a model for the modular architecture of BRC repeats that provides fresh insight into the mechanisms regulating homologous DNA recombination.  相似文献   

14.
PALB2 is essential for BRCA2 anchorage to nuclear structures and for homologous recombinational repair of DNA double-strand breaks. Here, we report that the N-terminal coiled-coil motif of PALB2 regulates its self-association and homologous recombination. Monomeric PALB2 shows higher efficiency to bind DNA and promotes RAD51 filament formation with or without the inhibitory effect of Replication Protein A. Moreover, overexpression of the PALB2 coiled-coil domain severely affects RAD51 loading to DNA damage sites suggesting a competition between PALB2 self-interaction and PALB2–BRCA1 interaction. In the presence of DNA damage, the switch between PALB2–PALB2 and PALB2–BRCA1 interactions allows the activation of HR. Controlling HR via PALB2 self-interactions could be important to prevent aberrant recombination in normal conditions and activate DNA repair when required.  相似文献   

15.
Mammary tumors are the most common tumor type in both human and canine females. Mutations in the breast cancer susceptibility gene, BRCA2, have been found in most cases of inherited human breast cancer. Similarly, the canine BRCA2 gene locus has been associated with mammary tumors in female dogs. However, deleterious mutations in canine BRCA2 have not been reported, thus far. The BRCA2 protein is involved in homologous recombination repair via its interaction with RAD51 recombinase, an interaction mediated by 8 BRC repeats. These repeats are 26-amino acid, conserved motifs in mammalian BRCA2. Previous structural analyses of cancer-associated mutations affecting the BRC repeats have shown that the weakening of RAD51''s affinity for even 1 repeat is sufficient to increase breast cancer susceptibility. In this study, we focused on 2 previously reported canine BRCA2 mutations (T1425P and K1435R) in BRC repeat 3 (BRC3), derived from mammary tumor samples. These mutations affected the interaction of canine BRC3 with RAD51, and were considered deleterious. Two BRC3 mutations (K1440R and K1440E), reported in human breast cancer patients, occur at amino acids corresponding to those of the K1435R mutation in dogs. These mutations affected the interaction of canine BRC3 with RAD51, and may also be considered deleterious. The two BRC3 mutations and a substitution (T1430P), corresponding to T1425P in canine BRCA2, were examined for their effects on human BRC3 function and the results were compared between species. The corresponding mutations and the substitution showed similar results in both human and canine BRC3. Therefore, canine BRCA2 may be a good model for studying human breast cancer caused by BRCA2 mutations.  相似文献   

16.
17.
RAD51 recombinase polymerizes at the site of double-strand breaks (DSBs) where it performs DSB repair. The loss of RAD51 causes extensive chromosomal breaks, leading to apoptosis. The polymerization of RAD51 is regulated by a number of RAD51 mediators, such as BRCA1, BRCA2, RAD52, SFR1, SWS1, and the five RAD51 paralogs, including XRCC3. We here show that brca2-null mutant cells were able to proliferate, indicating that RAD51 can perform DSB repair in the absence of BRCA2. We disrupted the BRCA1, RAD52, SFR1, SWS1, and XRCC3 genes in the brca2-null cells. All the resulting double-mutant cells displayed a phenotype that was very similar to that of the brca2-null cells. We suggest that BRCA2 might thus serve as a platform to recruit various RAD51 mediators at the appropriate position at the DNA-damage site.  相似文献   

18.
The tumor suppressor BRCA2 plays an essential role in repair of double-strand DNA breaks by regulating the action of the RAD51 recombinase. The activity of BRCA2 in turn is governed by DSS1, a small acidic protein that appears to function as a necessary cofactor. A model fungal system that reproduces the BRCA2-RAD51 interaction offers the opportunity to understand at the molecular level the mechanism of DSS1 activation.  相似文献   

19.
The breast cancer 2, early onset protein (BRCA2) is central to the repair of DNA damage by homologous recombination. BRCA2 recruits the recombinase RAD51 to sites of damage, regulates its assembly into nucleoprotein filaments and thereby promotes homologous recombination. Localization of BRCA2 to nuclear foci requires its association with the partner and localizer of BRCA2 (PALB2), mutations in which are associated with cancer predisposition, as well as subtype N of Fanconi anaemia. We have determined the structure of the PALB2 carboxy‐terminal β‐propeller domain in complex with a BRCA2 peptide. The structure shows the molecular determinants of this important protein–protein interaction and explains the effects of both cancer‐associated truncating mutants in PALB2 and missense mutations in the amino‐terminal region of BRCA2.  相似文献   

20.
The human RAD51 recombinase possesses DNA pairing and strand exchange activities that are essential for the error-free, homology-directed repair of DNA double-strand breaks. The recombination activities of RAD51 are activated upon its assembly into presynaptic filaments on single-stranded DNA at resected DSB ends. Defects in filament assembly caused by mutations in RAD51 or its regulators such as BRCA2 are associated with human cancer. Here we describe two novel RAD51 missense variants located in the multimerization/BRCA2 binding region of RAD51. F86L is a breast tumor-derived somatic variant that affects the interface between adjacent RAD51 protomers in the presynaptic filament. E258A is a germline variant that maps to the interface region between the N-terminal and RecA homology domains of RAD51. Both variants exhibit abnormal biochemistry including altered DNA strand exchange activity. Both variants inhibit the DNA strand exchange activity of wild-type RAD51, suggesting a mechanism for negative dominance. The inhibitory effect of F86L on wild-type RAD51 is surprising since F86L alone exhibits robust DNA strand exchange activity. Our findings indicate that even DNA strand exchange-proficient variants can have negative functional interactions with wild-type RAD51. Thus heterozygous F86L or E258 mutations in RAD51 could promote genomic instability, and thereby contribute to tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号