首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both cytosol and mitochondria of rat liver display protein kinase activity, cyclic AMP-independent, which is resolved by Sepharose 6B filtration and P-cellulose chromatography into multiple forms phosphorylating, besides endogenous mitochondrial membrane-bound proteins, also exogenous phosphoproteins such as casein and phosvitin.However, the forms by far predominant in the cytosol phosphorylate both phosphorylserine and phosphorylthreonine residues of casein, while most of the activity associated to mitochondrial structures is due to the forms phosphorylating only phosphorylserine residues.  相似文献   

2.
Both cytosol and mitochondria of rat liver display protein kinase activity, cyclic AMP-independent, which is resolved by Sepharose 6B filtration and P-cellulose chromatography into multiple forms phosphorylating, besides endogenous mitochondrial membrane-bound proteins, also exogenous phosphoproteins such as casein and phosvitin. However, the forms by far predominant in the cytosol phosphorylate both phosphorylserine and phosphorylthreonine residues of casein, while most of the activity associated to mitochondrial structures is due to the forms phosphorylating only phosphorylserine residues.  相似文献   

3.
Mitochondrial protein phosphatase from rat liver exhibits rather wide substrate specificity, since it readily dephosphorylates, besides phosvitin, casein, and cytosol phosphoproteins, also ATP, ADP, inorganic pyrophosphate, p-nitrophenylphosphate.Aliphatic phosphate esters (β-glycerophosphate, glucose-6-P, serine-phosphate) are not dephosphorylated to any detectable extent.Evidence for the participation of a single enzyme in the dephosphorylation of phosvitin and ATP is provided. However, the different affinity toward the two substrates and other evidence suggest that the enzyme has in vivo the biological role of dephosphorylating, at least preferentially, the phosphoproteins.  相似文献   

4.
The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32P-ACC phosphorylated by the casein kinases was identified.  相似文献   

5.
Human placental alkaline phosphatase, a marker protein for some nontrophoblastic neoplasms, was found to have phosphoprotein phosphatase activity. This was demonstrated by the dephosphorylation of 32P-labeled histones, protamine, glycogen synthetase, casein, and phosvitin at various pH values. Unlike the general phosphoprotein phosphatase, the placental alkaline phosphatase does not have phosphorylase a phosphatase activity.  相似文献   

6.
Starvation, diabetes and insulin did not alter the concentration of casein kinases in rat liver cytosol. However, the Km for casein of casein kinase 2 from diabetic rats was about 2-fold lower than that from control animals. Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats. Starvation did not affect the kinetic constants of casein kinases. The effect of diabetes on casein kinase 2 persisted after partial purification of the enzyme by glycerol-density-gradient centrifugation and affected also its activity on other protein substrates such as phosvitin, high-mobility-group protein 14 and glycogen synthase. The results indicate that rat liver cytosol casein kinase 2 is under physiological control.  相似文献   

7.
A nuclear protein kinase that shows a high degree of substrate specificity for the phosphorylation of the acidic proteins casein, phosvitin and non-histone chromatin proteins, rather than the basic proteins histones and protamine, was partially purified from lactatingrat mammary gland. The enzyme is associated with the acidic protein fraction of chromatin. Nuclear kinase requires Co2+ for activity, and other bivalent cations such as Mg2+ and Mn2+ can substitute partially for Co2+. The kinase is further activates (2–3-fold) by various salts, their concentration for maximum stimulation being: NaCl, 150mm; KCl, 200mm; sodium acetate, 300mm. The sedimentation coefficient of the nuclear kinase is 8.9S and its mol.wt. is approx. 300000 by gel-exclusion chromatography. The enzyme is not activated by cyclic AMP or cyclic GMP and is inhibited neither by the regulatory subunit of mammary cyclic AMP-dependent protein kinase nor by the heat-stable protein kinase inhibitor from ox heart. Analysis of 32P-labelled protein products reveals that the kinase transfers the terminal phosphate of ATP to serine and threonine residues of proteins. The enzyme, however, has specificity for the phosphorylation of threonine in casein and serine in phosvitin. Molecular size and enzymic characteristics of the nuclear protein kinase are clearly different from those of the cytosol enzyme previously characterized.  相似文献   

8.
When highly purified myelin from rat sciatic nerve was incubated with [γ-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [γ-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3′,5′-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing.From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

9.
Both cytosol and membranes of human erythrocytes display protein kinase activity towards exogenous protein substrates such as casein, phosvitin andhistones. The histone kinase activity, unlike casein kinase, of both cytosol and membranes is increased by cyclic AMP. The protein kinase forms removed from the membranes with 0.7 M NaCl, phosphorylate only serine residues of both casein and histones through a mechanism cyclic AMP-independent.The protein kinase activity located in the cytosol (hemolysate) is due also to enzyme forms phosphorylating both serine and threonine residues of casein, in addition to forms phosphorylating only serine residues of casein and histones.Also the cytosol kinase forms, once partially purified by Sepharose 6B filtration, appear to be cyclic AMP-independent.  相似文献   

10.
Dithiothreitol (Cleland's reagent) is widely used as a sulfhydryl protective reagent in biochemical systems in vitro. For example, dithiothreitol has been used to achieve maximal rates of enzyme activity for protein phosphokinase reactions (1–4) as well as for phosphoprotein phosphatese assays (1,5). Meisler and Langan (5) have utilized 32P-labeled histone phosphoprotein as a substrate to examine the protein phosphatase activity of a rat liver cytosol enzyme preparation. However, if one is dealing with a phosphoprotein substrate which may not be labeled with 32P, it would be desirable to measure the phosphatase activity using a sensitive chemical analysis, e.g., the method of Berenblum and Chain (6) as modified by Martin and Doty (7). We have been interested in examining the protein phosphatase activity associated with prostatic chromatin and the androgenic influences thereupon, using nonhistone and histone phosphoproteins and phosvitin as substrates (Ahmed and Davis, unpublished data). In designing these experiments, 1–3 mm dithiothreitol was added in the reaction medium; this subsequently resulted in interference of Pi analysis using the Berenblum and Chain procedure (6,7). We have, therefore, systematically examined the conditions which may be used to assay Pi when dithiothreitol is present in the sample. The following report deseribes these observations.  相似文献   

11.
Both cytosol and membranes of human erythrocytes display protein kinase activity towards exogenous protein substrates such as casein, phosvitin and histones. The histone kinase activity, unlike casein kinase, of both cytosol and membranes is increased by cyclic AMP. The protein kinase forms removed from the membranes with 0.7 M NaCl, phosphorylate only serine residues of both casein and histones through a mechanism cyclic AMP-independent. The protein kinase activity located in the cytosol (hemolysate) is due also to enzyme forms phosphorylating both serine and threonine residues of casein, in addition to forms phosphorylating only serine residues of casein and histones. Also the cytosol kinase forms, once partially purified by Sepharose 6B filtration, appear to be cyclic AMP-independent.  相似文献   

12.
Two cyclic AMP-independent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) (casein kinase 1 and 2) have been purified from rat liver cytosol by a method involving chromatography on phosphocellulose and casein-Sepharose 4B. Both kinases were essentially free of endogeneous protein substrates and capable of phosphorylating casein, phosvitin and I-form glycogen synthase, but were inactive on histone IIA, protamine and phosphorylase b. They were neither stimulated by cyclic AMP, Ca2+ and calmodulin, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. The casein and glycogen synthase kinase activities of each enzyme decreased at the same rate when incubated at 50 degrees C. Casein kinase 1 and casein kinase 2 showed differences in molecular weight, sensitivity to KCl, Km for casein and phosvitin and Ka for Mg2+, whereas their Km values for ATP and I-form glycogen synthase were similar. The phosphorylation of glycogen synthase by these kinases correlated with a decrease in the +/- glucose 6-phosphate activity ratio (independence ratio). However, casein kinase 1 catalyzed the incorporation of about 3.6 mol of 32P/85000 dalton subunit, decreasing the independence ratio from 83 to about 15, whereas the phosphorylation achieved by casein kinase 2 was only about 1.9 mol of 32P/850000 dalton subunit, decreasing the independence ratio to about 23. The independence ratio decrease was prevented by the presence of casein but was unaffected by phosphorylase b. These data indicate that casein/glycogen synthase kinases 1 and 2 are different from cyclic AMP-dependent protein kinase and phosphorylase kinase.  相似文献   

13.
Isolated rat liver mitochondrial membranes are found to contain tightly bound protein substrate(s) which can be phosphorylated in the presence of ATP by protein kinase(s) previously extracted with 0.7 M NaCl from the membranes themselves and by phosvitin kinase purified from liver cytosol. Such proteinkinase-dependent phosphorylation, which seems to be cyclic AMP-independent, involves the seryl and threonyl residues of the protein substrate(s).  相似文献   

14.
Some structural features required for the enzymatic phosphorylation of phosvitin by purified rat liver cytosol phosvitin kinase have been investigated by testing the activity of such an enzyme toward phosphopeptides differing in size and chemical composition, obtained by pronase or acid hydrolysis of phosvitin. The results obtained can be summarized as follows: (a) Phosvitin kinase phosphorylates even fairly simple phosphopeptides (mol.wt 1000-2000) at rates comparable with intact phosvitin. (b) Acetylation of both phosvitin and pronase phosphopeptides completely prevents their phosphorylation indicating that some lysine residues are strictly required for the phosvitin kinase reaction. (c) Accordingly polyphosphorylserine blocks Ser(P)n which are very actively phosphorylated in phosvitin and pronase phosphopeptides, do not undergo any more enzymatic phosphorylation once isolated as such in a form free of other amino acids. (d) The activity of phosvitin kinase toward substrates probably devoid of Ser(P)n blocks suggests that there are not required for the protein kinase reaction. However, they apparently enhance the phosphorylation rate of the peptide substrates, likely by making easier their binding to the enzyme. It is proposed therefore that the peptidic unit able to undergo phosphorylation by rat liver cytosol phosvitin kinase consists of one or more phosphorylserine residues having in their close proximity a lysine residue playing a critical role in the mechanism of transphosphorylation.  相似文献   

15.
Substrate specificity of Gaucher spleen phosphoprotein phosphatase   总被引:1,自引:0,他引:1  
The spleen in Gaucher's disease contains elevated levels of two distinct acid phosphatases. One of the isoenzymes, a tartrate-resistant type 5 acid phosphatase which we have designated SPII acid phosphatase, possesses considerable phosphoprotein phosphatase activity. The enzyme dephosphorylates phosvitin and casein at specific rates (V) of 38.6 and 45.0 units/mg, respectively. The dephosphorylation of the oligophosphoproteins as well as various fragments of phosvitin, histories, and monophosphopeptides was studied kinetically. Positive cooperativity (Hill coefficient = 1.3–2.0) was observed for the dephosphorylation of phosvitin and casein as well as for the dephosphorylation of fragments of phosvitin which contained as few as two vicinal phosphoserine residues. In contrast, the hydrolysis of phosphomonoesters such as o-phosphorylserine or various monophosphopeptides exhibited typical Michaelis-Menten kinetics. Cooperativity appears to depend upon the substrate rather than the enzyme. The cooperativity of dephosphorylation was not affected by altering the secondary structure of phosvitin from a random to β conformation or by acetylation of the protein; however, acetylated phosvitin was dephosphorylated more rapidly (V = 50.8 units/mg) than native phosvitin indicating that the very basic phosphatase enzyme (pI = 8.5) prefers more acidic phosphoproteins as substrates rather than basic proteins such as histone (V= 0.0013 unit/mg). A monophosphohexa-peptide (V = 0.47 unit/mg) and monophosphoheptapeptide (V = 0.18 unit/mg) proved to be much poorer substrates than phosvitin, and monophosphoproteins such as glycogen phosphorylase, phosphorylase kinase, and glycogen synthase were not dephosphorylated by the enzyme. Although the phosphatase is active on monophosphopeptides and the presence of flanking amino acids considerably decreases the Km of the enzyme for the phosphoserine residue (up to 100-fold), the enzyme appears to prefer peptide or protein substrates that contain two or more phosphoserine residues in close proximity. Finally, previous results showing the spleen phosphatase to be composed of 16,000- and 20,000-dalton subunits were apparently due to proteolysis during isolation since when 1.0 mm phenylmethylsulfonyl fluoride was included in the isolation media, the enzyme appeared as a single 35,000-dalton species when subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

16.
A simple and short purification procedure applicable to casein kinase II has been developed, for fully characterizing the enzyme from calf cerebral cortex cytosol. The procedure consists of four chromatographic steps: DEAE-cellulose, phosphocellulose, phosvitin-Sepharose and ATP-agarose which yields 87% pure casein kinase II. The purified enzyme shows three major bands with apparent molecular masses of 42, 38, and 27 kDa by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and is self-autophosphorylated on its 27 kDa polypeptide. The enzyme shows all the characteristics described for casein kinase II from other sources: it is independent of cyclic nucleotides, calcium/phospholipids, and double-stranded poly(I).poly(C); it can utilize both ATP and GTP as phosphoryl donors and can phosphorylate both casein and phosvitin but not histone. The kinetic studies establish that theK m for ATP is 12.5 M and 25.1 M when using phosvitin and casein respectively as phosphoryl acceptors. TheK m for phosvitin is 0.91 mg/ml and for casein 1.43 mg/ml, while theV max is 315 nmol/min/per mg protein and 479 nmol/min/per mg protein for phosvitin and casein respectively. The activity of the kinase is highly stimulated by KCl or NaCl, and almost completely inhibited by heparin concentrations of 1 g/ml (92%). This inhibition is reduced to only 33% in the presence of optimal KCl concentrations (150 mM). Spermine stimulates enzyme activity, whilst hemin produces a slight inhibition.  相似文献   

17.
Highly purified repressible acid phosphatase from Saccharomyces cerevisiae very efficiently dephosphorylates 32P-histones and the phosphopeptides Arg-Arg-Ala-Ser-(32P)-Val-Ala and Arg-Arg-Leu-Ser (32P)-Leu-Arg previously phosphorylated by either cAMP-dependent protein kinase or protein kinase-C. The Km values (0.03-1 microM) are very favourable if compared with those calculated for free phosphoaminoacids and p-nitrophenylphosphate which are three to six orders of magnitude higher. While also the phosphopeptide Asp-Ala-Gly-Tyr(32P)-Ala-Arg3-Gly is readily dephosphorylated, other phosphopeptides and phosphoproteins including phosphorylase kinase, phosvitin and casein phosphorylated by both casein kinase 1 and 2 are not appreciably affected by acid phosphatase. It is suggested that yeast repressible acid phosphatase may act in vivo as a phosphoprotein phosphatase.  相似文献   

18.
A casein-type protein kinase has been isolated from cauliflower (Brassica cauliflora Gars.) nuclei and purified to a specific activity of 23,000 units/milligram of protein (1 unit is defined as the transfer of 1 picomole of 32Pi from γ-[32P]ATP to substrate per minute at 28 C). The enzyme has a molecular weight of approximately 39,000 as judged by sucrose density gradient sedimentation. The casein kinase requires ATP as the phosphate donor and will phosphorylate casein and phosvitin, but not histones. The enzyme activity is not affected by cAMP or cGMP. The casein kinase appears to be analogous to casein kinases described in other plant and animal systems.  相似文献   

19.
Summary A cyclic nucleotide-independent protein kinase which phoshorylates preferentially acidic proteins such as casein or phosvitin was isolated from cytosol of chick duodenal mucosa. The enzyme was purified more than 633 fold to apparent homogeneity by ammonium sulfate fractionation, column chromatography on DEAE-cellulose, phosphocellulose, hydroxylapatite and by sucrose density gradient centrifugation. The native enzyme has a molecular weight of 131000 as measured by gel filtration. The enzyme is a complex protein containing three polypeptides of molecular weight of 39 000, 36 000 and 27 000. It behaves as a complex throughout its purification and gel filtration but its components are readily separated by electrophoresis in denaturing buffer. The 27 000 molecular weight band was selectively autophosphorylated when the enzyme was incubated in the presence of [-32P]ATP.When casein was used as substrate, physiological concentrations of naturally occurring polyamines such as spermine and spermidine markedly stimulated enzyme activity. However with phosvitin as substrate polyamines were strong inhibitors of the enzyme activity. This contrasting effect on intestinal kinase activity was also apparent using cytoplasmic proteins as endogenous phosphate acceptors. A characterization of this differential effect is presented and some possible physiological implications are discussed.  相似文献   

20.
Nuclear membranes from rat liver contain a phosphoprotein phosphatase activity capable of dephosphorylating endogenous nuclear membrane phosphoproteins. This activity was also expressed towards the 32P-labeled exogenous phosphoprotein substrates phosvitin and lysine-rich histone. Differential effects of altered ionic strength, EDTA, pyrophosphate, and 2-mercaptoethanol on the phosphatase activity towards the two exogenous substrates suggest the presence of multiple phosphatases in the nuclear membrane. ATP, ADP, and sodium fluoride inhibited activity towards both exogenous substrates, while cyclic AMP or cyclic GMP at 10?6M had no apparent effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号