首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Copper-zinc superoxide dismutase (Cu,Zn-SOD) and manganese superoxide dismutase (Mn-SOD) in some model experiments in vitro demonstrated antioxidant as well as pro-oxidant properties. In the present study, yeast Saccharomyces cerevisiae lacking Mn-SOD were studied using Cu,Zn-SOD inhibitor N-N'-diethyldithiocarbamate (DDC) as a model system to study the physiological role of the yeast Cu,Zn-SOD. Yeast treatment by DDC caused dose-dependent inhibition of SOD in vivo, with 75% inhibition at 10mM DDC. The inhibition of SOD by DDC resulted in modification of carbonylprotein levels, indicated by a bell-shaped curve. The activity of glutathione reductase, isocitrate dehydrogenase, and glucose-6-phosphate dehydrogenase (enzymes associated with antioxidant) increased, demonstrating a compensatory effect in response to SOD inhibition by different concentrations of DDC. A strong positive correlation (R2=0.97) was found between SOD and catalase activities that may be explained by the protective role of SOD for catalase. All observed effects were absent in the isogenic SOD-deficient strain that excluded direct DDC influence. The results are discussed from the point of view that in vivo Cu,Zn-SOD of S. cerevisiae can demonstrate both anti- and pro-oxidant properties.  相似文献   

3.
Cytoplasmic free and bound polysomes were isolated from bovine adrenal cortex, and used to program invitro protein synthesis in rat liver cell sap and wheat germ lysate systems. Synthesis of adrenodoxin(Ad) and adrenodoxin reductase(AdR) in the cell-free systems was determined by immunoprecipitation using monospecific antibodies, and the sizes of the invitro products were analyzed by SDS-polyacrylamide gel electrophoresis. Ad was synthesized by both free and bound polysomes as a putative large precursor having molecular weight of approximately 20,000 daltons, which was processed to mature size Ad (MW 12,000 daltons) by invitro incubation with adrenal cortex mitochondria. On the other hand, AdR was synthesized only by free polysomes apparently as the mature size product.  相似文献   

4.
Superoxide dismutase in vesicular arbuscular-mycorrhizal red clover plants   总被引:5,自引:0,他引:5  
The isoenzymatic pattern of Superoxide dismutase (SOD; EC 1.15.1.1) was studied in the symbiosis of Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe-Trifolium prarense L A Cu.Zn-SOD (M, 40500) was found in spores of G. mosseae . while one Mn-SOD (Mn-SOD I) and two Cu.Zn-SODs (Cu.Zn-SOD 1 and Cu.Zn-SOD II) were present in both roots and leaves of T. pratense . Molecular masses for Cu.Zn-SOD I and Cu.Zn-SOD II were 31000 and 34300. respectively. However, when T. prateme and G. mosseae were associated, mycorrhizal roots showed two new iso-zymes, Mn-SOD II and mycCu.Zn-SOD, which have relative molecular masses of 37 800 and 33 300, respectively. The mycCu.Zn-SOD was found to be specific for this association, whereas Mn-SOD II was also present in nodules of Rhizobium-T. pra-tense . Results suggest that both enzymes are induced in the T. praiense roots in response to invasion by mycorrhizal fungi, perhaps as a result of an increase in the generation of O-2 radicals in plant roots.  相似文献   

5.
Thylakoids obtained from intact spinach chloroplasts showedno superoxide dismutase (SOD) activity, but Cu,Zn- and Mn-SODactivities were detected in the presence of Triton X-100. Thylakoidmembranes and the lumen fraction were separated by centrifugationafter treatment of the thylakoids with a Yeda pressure cell.Cu,Zn-SOD was found in the lumen fraction. Mn-SOD was detectedin the thylakoid fraction only after addition of 1% Triton X-100.Antibody against spinach Cu,Zn-SOD did not interact with thelatent Cu,Zn-SOD in the thylakoids unless Triton was added.These results indicate that Cu,Zn-SOD occurs in the lumen inaddition to the stroma of spinach chloroplasts, and Mn-SOD bindsto the thylakoid membranes. (Received February 29, 1984; Accepted May 28, 1984)  相似文献   

6.
To determine the possible involvement of reactive oxygen species in ovulation, dynamic aspects of superoxide dismutase (SOD) isozyme were studied in the ovaries of rats by in situ hybridization histochemistry. Previously, mRNA levels of ovarian manganese superoxide dismutase (Mn-SOD) were reported markedly to increase whilst enzymic activity of Mn-SOD decreased during the ovulatory process after treating immature rats with 10 and 5 Units, respectively, of pregnant mare serum gonadotrophin (PMSG) and human chorionic gonadotrophin (HCG). Levels of Cu/Zn-SOD activity and Cu/Zn-SOD mRNA were reported to remain unchanged throughout ovulation. This increase in the Mn-SOD mRNA level was shown in the present study by in situ hybridization to be localized to the theca interna cells throughout the PMSG/HCG-induced ovulatory process. The observations suggest that the turnover rate of Mn-SOD but not Cu/Zn-SOD increases specifically in the mitochondria of these cells. SOD has been postulated to play important roles in steroidogenesis. The relationship is discussed between mitochondrial functions in steroid-secreting cells and superoxide radicals and related metabolite(s).  相似文献   

7.
Rat liver was homogenized in isotonic buffer, fractionated by differential centrifugation, and then subfractionated by equilibrium sedimentation in Nycodenz gradients. Fractions were assayed for both Cu,Zn-superoxide dismutase (SOD) and Mn-SOD by exploiting the cyanide sensitivity of the former activity and by the use of specific antibodies. As expected, the cytosol and lysosomal fractions contained Cu,Zn-SOD; while the mitochondrial matrix contained Mn-SOD. In mitochondria, Cu,Zn-SOD was found in the intermembrane space and Mn-SOD in the matrix and also on the inner membrane. The Mn-SOD associated with the inner membrane was solubilized by 0.5 m NaCl. Surprisingly the intracellular membrane fraction (microsomes) contained bound Cu,Zn-SOD that could be solubilized with a detergent, and to lesser degree with 0.5 m NaCl. Both the cytosolic and mitochondrial Cu,Zn-SODs were isolated and compared. They have identical molecular mass, cyanide sensitivity, SDS sensitivity, heat stability, and chloroform + ethanol stability. Tissue from Cu,Zn-SOD knockout mice was entirely devoid of Cu,Zn-SOD; indicating that the cytosolic and the intermembrane space Cu,Zn-SODs are coded for by the same gene. The significance of this distribution of the SODs is discussed.  相似文献   

8.
Metallothionein (MT), a sulfhydryl-rich protein, may be increased by administration of a variety of agents, including metals, cytokines and oxidative stress agents. Mitochondria are a major source of reactive oxygen species, but antioxidant systems against mitochondrial free radicals are not fully understood. In this study, we examined the induction of MT synthesis by administration of mitochondrial-specific reactive oxygen generators such as antimycin A (AA), an electron transfer inhibitor, and 2,4-dinitrophenol (DNP), an uncoupling agent. Subcutaneous administration of AA to mice significantly increased the hepatic MT concentration in a dose- and time-dependent manner. AA slightly elevated glutathione peroxidase (GSHPx) activity, but the rate of increase in GSHPx (1.3-fold) was smaller than that in MT (11.8-fold). Other antioxidants such as catalase, manganese-superoxide dismutase (Mn-SOD), copper/zinc-superoxide dismutase (Cu/Zn-SOD) and GSHPx were not activated by AA treatment. Moreover, administration of DNP induced the synthesis of MT in the liver. Although DNP slightly elevated Mn-SOD activity, the rate of increase in Mn-SOD (1.3-fold) was smaller than that in MT (3.7-fold). Other antioxidants such as catalase, Cu/Zn-SOD and GSHPx were not activated by DNP treatment. These data suggest that MT plays a major role in protection against oxidative stress induced in mitochondria.  相似文献   

9.
The effects were examined of 6-month intermittent hypobaric (4000 m) exposure on the antioxidant enzyme systems in soleus and tibialis muscles of rats. At the end of the 6-month experimental exposure, the six rats in both the exposed group and the control group were sacrificed. Immunoreactive mitochondrial superoxide dismutase (Mn-SOD) contents were measured as well as the activities of antioxidant enzymes [Mn-SOD, cytosolic SOD (Cu,Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX)]. Thiobarbituric acid-reactive substances (TBARS) were also determined as an indicator of lipid peroxidation. The high altitude exposure resulted in a marked increase in TBARS content in soleus muscle, suggesting increased levels of oxygen free radicals. Conversely, significant decreases in both Mn-SOD content and activity in solens muscle were oted affer exposure. Such trends were not noticed in tibialis muscle. On the other hand, no significant changes in Cu,Zn-SOD, CAT, or GPX were observed in either muscle. These results suggested that the increases in lipid peroxidation were most probably a result of decreased Mn-SOD function which was more depressed in oxidative than in glycolytic muscle.  相似文献   

10.
The effect in vivo of high nutrient levels of copper (240 micromolar) on the activity of different metalloenzymes containing Cu, Mn, Fe, and Zn, distributed in chloroplasts, peroxisomes, and mitochondria, was studied in leaves of two varieties of Pisum sativum L. plants with different sensitivity to copper. The metalloenzymes studied were: cytochrome c oxidase, Mn-superoxide dismutase (Mn-SOD) and Cu,Zn-superoxide dismutase I (Cu,Zn-SOD I), for mitochondria; catalase and Mn-SOD, for peroxisomes; and isozyme Cu,Zn-SOD II for chloroplasts. The activity of mitochondrial SOD isozymes (Mn-SOD and Cu,Zn-SOD I) was very similar in Cu-tolerant and Cu-sensitive plants, whereas cytochrome c oxidase was lower in Cu-sensitive plants. Chloroplastid Cu,Zn-SOD activity was the same in the two plant varieties. In contrast, the peroxisomal Mn-SOD activity was considerably higher in Cu-tolerant than in Cu-sensitive plants, and the activity of catalase was also increased in peroxisomes of Cu-tolerant plants. The higher activities of these peroxisomal active oxygen-related enzymes in Cu-tolerant plants suggest the involvement of reactive oxygen intermediates (O2, OH) in the mechanism of Cu lethality, and also imply a function for peroxisomal Mn-SOD in the molecular mechanisms of plant tolerance to Cu in Pisum sativum L.  相似文献   

11.
The effect of superoxide dismutase (SOD) activity and isoenzyme pattern of detergents, incubation time, and sonication in the preparation of rat liver samples was investigated. The activity of the manganese form of the enzyme (Mn-SOD) was found to decrease significantly after 4 hr of incubation at room temperature, and activity of the copper, zinc form of the enzyme (Cu, Zn-SOD) was not changed significantly even after 24 hr, although levels were somewhat decreased. Sonication of the sample did not affect Cu, Zn-SOD activity, but total Mn-SOD activity was increased. Addition of detergents did not increase Mn-SOD activity when homogenates were sonicated, indicating that Mn-SOD is not membrane bound. Detergents also had no effect on Cu, Zn-SOD activity. None of the treatments investigated altered the isoenzyme patterns, providing evidence that these isoenzymes are not degradation products.  相似文献   

12.
To investigate the role of superoxide dismutase (SOD) in the ovulatory process, SOD isozymes and their mRNAs were determined in the ovary of 22-day-old rats. After treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG), ovarian activity of Mn-SOD decreased markedly while Cu/Zn-SOD remained unchanged. However, the ovarian level of mRNA for Mn-SOD markedly increased after hCG-treatment while that for Cu/Zn-SOD decreased only slightly. Ovulation was inhibited by intravenous injection of a long-acting SOD. These results suggested that superoxide radicals in the ovary might play a critical role in the mechanism for hCG-induced ovulation.  相似文献   

13.
Lu CY  Lee HC  Fahn HJ  Wei YH 《Mutation research》1999,423(1-2):11-21
Mitochondrial DNA (mtDNA) mutations and impaired respiratory function have been demonstrated in various tissues of aged individuals. We hypothesized that age-dependent increase of ROS and free radicals production in mitochondria is associated with the accumulation of large-scale mtDNA deletions. In this study, we first confirmed that the proportion of mtDNA with the 4977 bp deletion in human skin tissues increases with age. We then investigated the 8-hydroxy-2'-deoxyguanosine (8-OH-dG) content in skin tissues and lipid peroxides content of the skin fibroblasts from subjects of different ages. The results showed an age-dependent increase of 8-OH-dG level in the total DNA of skin tissues of the subjects above the age of 60 years. The specific content of malondialdehyde, an end product of lipid peroxidation, was also found to increase with age. On the other hand, we examined the enzyme activities of Cu, Zn-superoxide dismutase (Cu,Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase, and glutathione peroxidase (GPx) in the skin fibroblasts. The activities of Cu,Zn-SOD, catalase and glutathione peroxidase were found to decrease with age. However, the activity of Mn-SOD was increased with age before 60 years but was decreased thereafter. Moreover, the activity ratios of Mn-SOD/catalase and Mn-SOD/GPx exhibited the same pattern of change with age. This indicates that free radical scavenging enzymes can effectively dispose of ROS and free radicals before 60 years of age. However, elevated oxidative stress caused by an imbalance between the production and removal of ROS and free radicals occurred in skin fibroblasts after 60 years of age. Taken together, we suggest that the functional decline of free radical scavenging enzymes and the elevation of oxidative stress may play an important role in eliciting oxidative damage and mutation of mtDNA during the human aging process.  相似文献   

14.
Leukemic cell lines, such as U937, THP-1, and HL60 cells, can differentiate into macrophages following exposure to various agents including 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro. It is well known that TPA enhances reactive oxygen species (ROS) generation through the activation of NADPH oxidase (NOX), and ROS act as mediators in TPA signaling. Extracellular-superoxide dismutase (EC-SOD) is a major anti-oxidative enzyme that protects the cells from damaging effects of superoxide. Recently, the reduction of Cu/Zn-SOD and the induction of Mn-SOD by TPA in leukemic cells have been reported; however, the regulation of EC-SOD by TPA remains poorly understood. Here, we explored the regulation of EC-SOD during the monocytic differentiation of U937 cells by TPA. We observed the reduction of EC-SOD and Cu/Zn-SOD, whereas the induction of Mn-SOD during the differentiation of U937 cells. The reduction of EC-SOD and Cu/Zn-SOD was attenuated by pretreatments with GF109203X (an inhibitor of protein kinase C, PKC), diphenyleneiodonium (an inhibitor of NOX), and U0126 (an inhibitor of mitogen-activated protein kinase kinase, MEK/extracellular-signal regulated kinase, ERK). Interestingly, pretreatment with BAY11-7082 (an inhibitor of nuclear factor-κB, NF-κB) suppressed the reduction of Cu/Zn-SOD, but not of EC-SOD. Furthermore, we also determined the involvement of newly synthesized protein and the instability of mRNA in the reduction of EC-SOD. Overall, our results suggest that the expression of EC-SOD is decreased by TPA through intracellular signaling consisting of PKC, NOX-derived ROS and MEK/ERK, but not of NF-κB signaling.  相似文献   

15.
Manganese-superoxide dismutase (Mn-SOD) from Japanese flounder (Paralichthys olivaceus) hepatopancreas has been purified with high purification (781-fold) and recovery (10.8%). The molecular mass of the purified enzyme was estimated to be 26kDa by SDS-PAGE under reducing conditions. In activity staining by native-PAGE, the Japanese flounder Mn-SOD gave three active bands and exhibited KCN-insensitive activity. In addition, the electrophoretic mobility of this enzyme was observed to be faster than that of Japanese flounder Cu,Zn-SOD. On the other hand, the N-terminal amino acid sequence of this Mn-SOD was determined to be 16 amino acid residues, and the sequence showed high homology to other Mn-SODs but not Japanese flounder Cu,Zn-SOD. Analysis of nucleotide and deduced amino acid sequences revealed that the Mn-SOD cDNA consisted of a 64bp 5'-non-coding region, a 675bp open reading frame encoding 225 amino acids, and a 465bp 3'-non-coding region. The first 27 amino acids containing a mitochondria-targeting signal were highly conserved among other Mn-SODs.  相似文献   

16.
《Free radical research》2013,47(5):401-405
Superoxide dismutase activity was measured in liver and lung from 3 and 24 month-old rats. Both total SOD and Mn-SOD activity decreased significantly in the liver of old rats. Recent results from our laboratory have indicated that during aging, the activity of Cu/Zn-SOD decreases in rat liver and that there is an accumulation of altered protein. It was also shown that the old Cu/Zn-SOD had one histidine fewer than the young one. In the present study, the immunoprecipitation experiments showed that the amount of immunoprecipitable Mn-SOD from liver of old rats was greater than from young ones, but when amino acid residues were measured in purified young and old Mn-SOD from liver, no change was observed. In lung, no significant age-related differences in total SOD, Cu/Zn-SOD and Mn-SOD activity were found, nor was there accumulation of altered protein during aging.  相似文献   

17.
Superoxide dismutase activity was measured in liver and lung from 3 and 24 month-old rats. Both total SOD and Mn-SOD activity decreased significantly in the liver of old rats. Recent results from our laboratory have indicated that during aging, the activity of Cu/Zn-SOD decreases in rat liver and that there is an accumulation of altered protein. It was also shown that the old Cu/Zn-SOD had one histidine fewer than the young one. In the present study, the immunoprecipitation experiments showed that the amount of immunoprecipitable Mn-SOD from liver of old rats was greater than from young ones, but when amino acid residues were measured in purified young and old Mn-SOD from liver, no change was observed. In lung, no significant age-related differences in total SOD, Cu/Zn-SOD and Mn-SOD activity were found, nor was there accumulation of altered protein during aging.  相似文献   

18.
氯化钠胁迫下嫁接黄瓜叶片SOD和CAT mRNA基因表达及其活性   总被引:1,自引:0,他引:1  
研究了NaCl胁迫下嫁接和自根黄瓜叶片Cu/Zn-SOD、Mn-SOD和CAT mRNA的表达与其酶活性变化及其MDA含量和电解质渗漏率变化.结果表明:在NaCl胁迫条件下,嫁接黄瓜叶片Cu/Zn-SOD mRNA、Mn-SOD mRNA和CAT mRNA的相对表达量均高于自根黄瓜,SOD、Cu/Zn-SOD、Mn-SOD和CAT活性也均高于自根黄瓜,说明与自根黄瓜相比,嫁接黄瓜叶片较高的Cu/Zn-SOD mRNA、Mn-SOD mRNA和CAT mRNA相对表达量是其维持较高Cu/Zn-SOD、Mn-SOD和CAT活性的重要原因;随着NaCl胁迫时间的延长,嫁接和自根黄瓜叶片Cu/Zn-SOD- mRNA、Mn-SOD mRNA和CAT mRNA的相对表达量均呈上升趋势,但其酶活性变化并不完全一致,说明还有其他因素参与相关酶活性的调控;嫁接黄瓜叶片MDA含量和电解质渗漏率均低于自根黄瓜,说明嫁接黄瓜具有较高的活性氧清除系统,可以减少活性氧物质的危害,提高其耐盐性.  相似文献   

19.
Abstract: Copper/zinc superoxide dismutase (Cu/Zn-SOD) is a major free radical scavenging enzyme. Increased Cu/Zn-SOD activity protects cells against oxidative stress mediated by different mechanisms. However, there is also in vitro and in vivo evidence that, in the absence of abnormal oxidative stress, chronic increased Cu/Zn-SOD activity is detrimental to living cells. To address this issue, we examined the fate of mature midbrain neurons from transgenic mice expressing human Cu/Zn-SOD and from their nontransgenic littermates. Midbrain from transgenic pups had about threefold higher Cu/Zn-SOD activity than that from nontransgenic pups. Virtually all transgenic neurons were strongly immunoreactive for human Cu/Zn-SOD protein in their cell bodies and processes. The number of midbrain neurons decreased over time in both transgenic and nontransgenic cultures, but to a significantly smaller extent in the transgenic cultures. Postnatal midbrain neurons died by either necrosis or apoptosis, and increased Cu/Zn-SOD activity attenuated both forms of cell death. Furthermore, increased Cu/Zn-SOD activity better prevented the loss of dopaminergic neurons than GABAergic neurons. We also found that neuronal processes were dramatically denser in transgenic cultures than in nontransgenic cultures. These results indicate that chronic increased Cu/Zn-SOD activity does not appear to be detrimental, but rather promotes cell survival and neuronal process development in postnatal midbrain neurons, probably by providing more efficient detoxification of free radicals. They also show that increased Cu/Zn-SOD activity does not seem to play a critical role in determining the mode of cell death in this culture system.  相似文献   

20.
Two commonly used assays for superoxide dismutase (SOD) activity have been compared, one using cytochrome c and the other using XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) as the indicating scavenger of superoxide. The use of cyanide to selectively suppress Cu,Zn-SOD and thus to allow assay of both Cu,Zn-SOD and Mn-SOD in mixtures of the two was also explored, as was the influence of pH. The XTT assay became more sensitive at elevated pH, because the rate of the superoxide/XTT reaction declines with increasing pH. This was clearly seen with the Cu,Zn-SOD but barely with Mn-SOD because the former retains full activity from pH 5 to 10 while the latter does not. Cyanide reacted with cytochrome c, but not XTT, in a concentration- and time-dependent manner and thus diminished its reducibility by superoxide. Cytochromes endogenous to tissue fractions were reduced by the xanthine oxidase reaction and this caused a decrease in absorbance 470 nm which interfered with the XTT assay. The alkalinizing effect of cyanide salts and the problems encountered in neutralizing cyanide stock solutions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号