首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The SPS4 gene of Saccharomyces cerevisiae, a sporulation-specific gene identified previously in a differential hybridization screen of a genomic yeast DNA library, has been characterized further. The protein encoded by this gene was inferred from its nucleotide sequence to be 38,600 daltons with an isoelectric pH of 8.2. Consistent with this, two-dimensional polyacrylamide gel electrophoresis of the in vitro translation products of RNA purified by hybridization with the cloned SPS4 DNA indicated that the SPS4 gene product is a 39-kilodalton, basic protein. This protein was found to be identical in size and charge to a major, sporulation-specific protein identified in a two-dimensional polyacrylamide gel electrophoretic comparison of the in vitro translation products of total RNA from sporulating MATa/MAT alpha cells and asporogenous MAT alpha/MAT alpha cells. A MATa/MAT alpha strain homozygous for a partial deletion of the SPS4 gene appeared, however, to be unaffected in its ability to form viable ascospores.  相似文献   

3.
A biphasic synthesis of 1,3-beta-glucanase occurred when cells of Saccharomyces cerevisiae AP-1 (a/alpha) were incubated in sporulation medium. The capacity to degrade laminarin increased very slowly during the first 7 h but at a much faster rate thereafter. Changes occurring during the first period were not sporulation specific since the moderate increase in activity against laminarin was insensitive to glutamine and hydroxyurea and also took place in the nonsporulating strain S. cerevisiae AP-1 (alpha/alpha). However, the changes taking place after 7 h must be included in the group of sporulation-specific events since they were inhibited by glucose, glutamine, and hydroxyurea and did not occur in the nonsporulating diploid. Consequently, only when the cells had been incubated for at least 7 h in sporulation medium did full induction of activity against laminarin take place upon shift to a medium which favored vegetative growth. Changes in the relative proportions of the vegetative glucanases, namely, endo- and exo-1,3-beta-glucanase, and the formation of a new sporulation-specific 1,3-beta-glucanase account for the observed events and are the consequence of the expression of the sporulation program.  相似文献   

4.
5.
Exo-1,3-beta-D-glucanase secreted by Saccharomyces cerevisiae undergoes extracellular modifications in its carbohydrate moiety that change the affinity towards the lectin concanavalin A. The transition of negatively reacting enzyme form into positively reacting one depends on temperature. Results from experiments with glucono-delta-lactone and from treatments in vitro with hydrolases suggest a glycosidase-mediated mechanism.  相似文献   

6.
Normal cell multiplication requires that the events of mitosis occur in a carefully ordered fashion. Cells employ checkpoints to prevent cycle progression until some prerequisite step has been completed. To explore the mechanisms of checkpoint enforcement, we previously screened for mutants of Saccharomyces cerevisiae which are unable to recover from a transient treatment with a benzimidazole-related microtubule inhibitor because they fail to inhibit subsequent cell cycle steps. Two of the identified genes, BUB2 and BUB3, have been cloned and described (M. A. Hoyt, L. Totis, and B. T. Roberts, Cell 66:507-517, 1991). Here we present the characterization of the BUB1 gene and its product. Genetic evidence was obtained suggesting that Bub1 and Bub3 are mutually dependent for function, and immunoprecipitation experiments demonstrated a physical association between the two. Sequence analysis of BUB1 revealed a domain with similarity to protein kinases. In vitro experiments confirmed that Bub1 possesses kinase activity; Bub1 was able to autophosphorylate and to catalyze phosphorylation of Bub3. In addition, overproduced Bub1 was found to localize to the cell nucleus.  相似文献   

7.
8.
9.
10.
The SEC20 gene product (Sec20p) is required for endoplasmic reticulum (ER) to Golgi transport in the yeast secretory pathway. We have cloned the SEC20 gene by complementation of the temperature sensitive phenotype of a sec20-1 strain. The DNA sequence predicts a 44 kDa protein with a single membrane-spanning region; Sec20p has an apparent molecular weight of 50 kDa and behaves as an integral membrane protein with carbohydrate modifications that appear to be O-linked. A striking feature of this protein is its C-terminal sequence, which consists of the tetrapeptide HDEL. This signal is known to be required for the retrieval of soluble ER proteins from early Golgi compartments, but has not previously been observed on a membrane protein. The HDEL sequence of Sec20p is not essential for viability but helps to maintain intracellular levels of the protein. Depletion of Sec20p from cells results in the accumulation of an extensive network of ER and clusters of small vesicles. We suggest a possible role for the SEC20 product in the targeting of transport vesicles to the Golgi apparatus.  相似文献   

11.
The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function.  相似文献   

12.
13.
An alpha-glucosidase activity (SAG) occurs in a/alpha Saccharomyces cerevisiae cells beginning at about 8 to 10 h after the initiation of sporulation. This enzyme is responsible for the rapid degradation of intracellular glycogen which follows the completion of meiosis in these cells. SAG differs from similar activities present in vegetative cells and appears to be a sporulation-specific enzyme. Cells arrested at various stages in sporulation (DNA replication, recombination, meiosis I, and meiosis II) were examined for SAG activity; the results show that SAG appearance depends on DNA synthesis and some recombination events but not on the meiotic divisions.  相似文献   

14.
15.
In the yeast Saccharomyces cerevisiae, glucoamylase activity appears specifically in sporulating cells heterozygous for the mating-type locus (MAT). We identified a sporulation-specific glucoamylase gene (SGA) and show that expression of SGA is positively regulated by the mating-type genes, both MATa1 and MAT alpha 2. Northern blot analysis revealed that control of SGA is exerted at the level of RNA production. Expression of SGA or the consequent degradation of glycogen to glucose in cells is not required for meiosis or sporulation, since MATa/MAT alpha diploid cells homozygous for an insertion mutation at SGA still formed four viable ascospores.  相似文献   

16.
The PRO1 gene of Saccharomyces cerevisiae encodes the 428-amino-acid protein gamma-glutamyl kinase (ATP:L-glutamate 5-phosphotransferase, EC 2.7.2.11), which catalyzes the first step in proline biosynthesis. Amino acid sequence comparison revealed significant homology between the yeast and Escherichia coli gamma-glutamyl kinases throughout their lengths. Four close matches to the consensus sequence for GCN4 protein binding and one close match to the RAP1 protein-binding site were found in the PRO1 upstream region. The response of the PRO1 gene to changes in the growth medium was analyzed by measurement of steady-state mRNA levels and of beta-galactosidase activity encoded by a PRO1-lacZ gene fusion. PRO1 expression was not repressed by exogenous proline and was not induced by the presence of glutamate in the growth medium. Although expression of the PRO1 gene did not change in response to histidine starvation, both steady-state PRO1 mRNA levels and beta-galactosidase activities were elevated in a gcd1 strain and reduced in a gcn4 strain. In addition, a pro1 bradytrophic strain became completely auxotrophic for proline in a gcn4 strain background. These results indicate that PRO1 is regulated by the general amino acid control system.  相似文献   

17.
The Saccharomyces cerevisiae gene MEC1 represents a structural homolog of the human gene ATM mutated in ataxia telangiectasia patients. Like human ataxia telangiectasia cell lines, mec1 mutants are defective in G2 and S-phase cell cycle checkpoints in response to radiation treatment. Here we show an additional defect in G1 arrest following treatment with UV light or gamma rays and map a defective arrest stage at or upstream of START in the yeast cell cycle.  相似文献   

18.
The Saccharomyces cerevisiae open reading frame YKR090w encodes a predicted protein displaying similarity in organization to paxillin, a scaffolding protein that organizes signaling and actin cytoskeletal regulating activities in many higher eucaryotic cell types. We found that YKR090w functions in a manner analogous to paxillin as a mediator of polarized cell growth; thus, we have named this gene PXL1 (Paxillin-like protein 1). Analyses of pxl1Delta strains show that PXL1 is required for the selection and maintenance of polarized growth sites during vegetative growth and mating. Genetic analyses of strains lacking both PXL1 and the Rho GAP BEM2 demonstrate that such cells display pronounced growth defects in response to different conditions causing Rho1 pathway activation. PXL1 also displays genetic interactions with the Rho1 effector FKS1. Pxl1p may therefore function as a modulator of Rho-GTPase signaling. A GFP::Pxl1 fusion protein localizes to sites of polarized cell growth. Experiments mapping the localization determinants of Pxl1p demonstrate the existence of localization mechanisms conserved between paxillin and Pxl1p and indicate an evolutionarily ancient and conserved role for LIM domain proteins in acting to modulate cell signaling and cytoskeletal organization during polarized growth.  相似文献   

19.
Using a gel retardation assay it was shown that the 87 bp DNA fragment (UAS87) containing the upstream activating sequence (UAS) of S. cerevisiae EN01 gene and a nuclear extract gave rise to three migration-retarded species specific to UAS87. Heat- or proteinase-treatment of the nuclear extract revealed that these species were protein-DNA complexes. The precise binding region of the protein identified by DNaseI protection analysis was found to include a CCAAACA sequence which forms a dyad-symmetrical structure. The amount of one of the three migration-retarded species significantly increased when cells were grown in medium containing a gluconeogenic carbon source. The introduction of pGCR8, a multicopy plasmid containing GCR1 gene, a regulatory gene controlling the expression of several glycolytic enzymes, showed no effect on the amount of three migration-retarded species.  相似文献   

20.
The glyoxylate cycle is essential for the utilization of C2 compounds by the yeast Saccharomyces cerevisiae. Within this cycle, isocitrate lyase catalyzes one of the key reactions. We obtained mutants lacking detectable isocitrate lyase activity, screening for their inability to grow on ethanol. Genetic and biochemical analysis suggested that they carried a defect in the structural gene, ICL1. The mutants were used for the isolation of this gene and it was located on a 3.1-kb BglII-SphI DNA fragment. We then constructed a deletion-substitution mutant in the haploid yeast genome. It did not have any isocitrate lyase activity and lacked the ability to grow on ethanol as the sole carbon source. Both strands of a DNA fragment carrying the gene and its flanking regions were sequenced. An open reading frame of 1671 bp was detected, encoding a protein of 557 amino acids with a calculated molecular mass of 62515 Da. The deduced amino acid sequence shows extensive similarities to genes encoding isocitrate lyases from various organisms. Two putative cAMP-dependent protein-kinase phosphorylation sites may explain the susceptibility of the enzyme to carbon catabolite inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号