首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
ADAMTS metalloproteases constitute a family of 19 secreted protein or proteoglycan processing enzymes. ADAMTS9 and its closest mammalian relative, ADAMTS20, are related to gon-1, a metalloprotease required for gonadal morphogenesis in Caenorhabditis elegans. Although expressed at generally low levels in embryonic subectodermal mesenchyme, ADAMTS20 is required for melanoblast colonization of skin. Mutations in Adamts20 cause Belted, one of several white spotting alleles in the mouse. In contrast to Adamts20, we previously showed by Northern blotting that Adamts9 was expressed highly throughout mouse development. Using RNA in situ hybridization, we determined the spatial and temporal regulation of Adamts9 during mouse embryogenesis. At 7.5 dpc Adamts9 is expressed in the allantois, trophoblast, parietal endoderm and decidual tissue. At 9.5 dpc it is expressed in head mesoderm and in the developing heart. From 11.5 to 12.5 dpc, Adamts9 is strongly expressed in posterior mesoderm, in the craniofacial region, ventral body wall and diaphragm. After 14.5 dpc, Adamts9 was highly expressed in the mesenchyme of developing lung, kidney, and mesentery. It is expressed during skeletogenesis, being present from 13.5 dpc in perichondrium, in the proliferation zone of growth plates after 15.5 dpc and it is highly expressed in newly formed bone. It is expressed in vascular endothelium and during formation of the pituitary and cochlea, but expression in the central nervous system is limited to the floor plate of the diencephalon, to the ventricular zone of the cerebral cortex and to the choroid plexus.  相似文献   

4.
Genes with restricted expression within the developing embryo represent valuable tools as they allow distinct tissue types to be distinguished and studied. In order to identify genes that are expressed within a particular germ layer, a differential screen was performed using germ layer-specific cDNA libraries derived from gastrulation stage mouse embryos. The gene expression profiles of the germ layers were compared following the hybridisation of some 20,000 cDNA clones with probes derived from germ layer-specific Ectoderm, Mesoderm and Endoderm libraries. A cDNA clone (50c15) was identified that hybridised with the Mesoderm-derived probe but not Ectoderm or Endoderm. 50c15 derives from Ipl/Tssc3/BWR1C, an imprinted gene which in human maps to chromosome 11p15.5. This region has been associated with Beckwith-Weidemann Syndrome, Wilms' tumour and ovarian, breast and lung cancer. In the gastrulating mouse embryo, wholemount RNA in situ hybridisation revealed that Ipl expression is restricted not only to the mesodermal germ layer, but specifically to lateral mesoderm and the most posterior extent of the primitive streak from which lateral and extra-embryonic mesoderm is derived. Moreover, Ipl is expressed in extra-embryonic tissues prior to gastrulation and afterwards in extra-embryonic mesoderm, ectoderm and endoderm. This expression profile indicates that Ipl is a good molecular marker for embryonic mesoderm and extra-embryonic tissues. In addition heterotopic grafting studies indicate that nascent mesoderm, which expresses Ipl, is restricted in its potential and therefore may be committed to its fate.  相似文献   

5.
The visceral yolk sac (VYS), composed of extraembryonic mesoderm and visceral endoderm, is the initial site of blood cell development and serves important nutritive and absorptive functions. In the mouse, the visceral endoderm becomes a morphologically distinct tissue at the time of implantation (E4.5), while the extraembryonic mesoderm arises during gastrulation (E6.5–8.5). To isolate genes differentially expressed in the developing yolk sac, polymerase chain reaction (PCR) methods were used to construct cDNA from late primitive streak to neural plate stage (E7.5) murine VYS mesoderm and VYS endoderm tissues. Differential screening led to the identification of six VYS mesoderm-enriched clones: ribosomal protein L13a, the heat shock proteins hsc 70 and hsp 86, guanine-nucleotide binding protein-related gene, cellular nucleic acid binding protein, and ã-enolase. One VYS endoderm-specific cDNA was identified as apolipoprotein C2. In situ hybridization studies confirmed the differential expression of these genes in E7.5 yolk sac tissues. These results indicate that representative cDNA populations can be obtained from small numbers of cells and that PCR methodologies permit the study of gene expression during early mammalian postimplantation development. While all of the mesoderm-enriched genes were ubiquitously expressed in the embryo proper, apolipoprotein C2 expression was confined to the visceral endoderm. These results are consistent with the hypothesis that at E7.5, the yolk sac endoderm provides differentiated liver-like functions, while the newly developing extraembryonic mesoderm is still a largely undifferentiated tissue. © 1995 wiley-Liss, Inc.  相似文献   

6.
The Smad proteins are important intracellular mediators of the transforming growth factor beta (TGFbeta) family of secreted growth factors. Smad1 is an effector of signals provided by the bone morphogenetic protein (BMP) sub-group of TGFbeta molecules. To understand the role of Smad1 in mouse development, we have generated a Smad1 loss-of-function allele using homologous recombination in ES cells. Smad1-/- embryos die by 10.5 dpc because they fail to connect to the placenta. Mutant embryos are first recognizable by 7.0 dpc, owing to a characteristic localized outpocketing of the visceral endoderm at the posterior embryonic/extra-embryonic junction, accompanied by a dramatic twisting of the epiblast and nascent mesoderm. Chimera analysis reveals that these two defects are attributable to a requirement for Smad1 in the extra-embryonic tissues. By 7.5 dpc, Smad1-deficient embryos show a marked impairment in allantois formation. By contrast, the chorion overproliferates, is erratically folded within the extra-embryonic space and is impeded in proximal migration. BMP signals are known to be essential for the specification and proliferation of primordial germ cells. We find a drastic reduction of primordial germ cells in Smad1-deficient embryos, suggesting an essential role for Smad1-dependent signals in primordial germ cell specification. Surprisingly, despite the key involvement of BMP signaling in tissues of the embryo proper, Smad1-deficient embryos develop remarkably normally. An examination of the expression domains of Smad1, Smad5 and Smad8 in early mouse embryos show that, while Smad1 is uniquely expressed in the visceral endoderm at 6.5 dpc, in other tissues Smad1 is co-expressed with Smad5 and/or Smad8. Collectively, these data have uncovered a unique function for Smad1 signaling in coordinating the growth of extra-embryonic structures necessary to support development within the uterine environment.  相似文献   

7.
The ter (teratoma) mutation causes primordial germ cell (PGC) deficiency in ter/ter embryos at 9.5–12.5 days of post-coitum (dpc) in mouse strains 129/Sv- ter and LTXBJ- ter . To study the effects of the ter mutation on the PGC development more precisely, we examined the PGC number and distribution in 7.5–12.5 dpc embryo of ter congenic C57BL/6J- ter strain using their complete serial sections. The ter genotypes of embryos were identified by the polymerase chain reaction (PCR) polymorphisms of the microsatellite DNA of the Grl -1 locus mapped near the ter locus. Results showed that: (i) the PGC number in ter/ter embryos was similar to those of + / ter and + / + embryos at 7.5 dpc, and did not increase at 8.0–12.5 dpc, although those of normal littermates did usually; (ii) the PGC migration to genital ridges was never affected in all embryos; and (iii) the ter genotype difference in the PGC numbers was not recognized between + / ter and + / + embryos. We concluded that the ter mutation does not affect the PGC appearance around 7.5 dpc, but first causes PGC deficiency around 8.0 dpc at the beginning of their migration and proliferation, suggesting that the normal function of the ter gene may be essential for the proliferation or survival mechanisms of PGC.  相似文献   

8.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   

9.
Isolation of endo A cDNA from mouse 8-cell stage embryos   总被引:1,自引:0,他引:1  
To analyse the species of genes expressed in a cleavage stage mouse embryo, we have constructed a cDNA library containing 3.0 x 10(5) independent clones from about 2 x 10(3) embryos at the 8-cell stage of development. Endo A cDNA prepared from parietal yolk sac endoderm like PYS-2 cells was used to screen the library. Southern blot analyses using the endo A sequence as a probe and restriction mapping analyses revealed that four independent recombinants had been inserted endo A sequence. Sequencing data of these clones showed that endo A mRNA present in the 8-cell stage embryo is identical to that of parietal yolk sac endoderm cells.  相似文献   

10.
Primordial germ cells in the mouse embryo during gastrulation   总被引:45,自引:0,他引:45  
With the aid of a whole-mount technique, we have detected a small cluster of alkaline phosphatase (ALP)-positive cells in whole mounts of mid-primitive-streak-stage embryos, 7-7 1/4 days post coitum (dpc). Within the cluster, about 8 cells contain a small cytoplasmic spot, intensely stained for ALP activity and possibly associated with an active Golgi complex. The cluster lies just posterior to the definitive primitive streak in the extraembryonic mesoderm, separated from the embryo by the amniotic fold. Towards the end of gastrulation, the number of cells containing the ALP-positive spot rises to between 50 and 80. Thereafter the number of cells in the extraembryonic cluster declines, and similar cells start to be seen in the mesoderm of the primitive streak and then in the endoderm. At 8 dpc, about 125 ALP-stained cells are found, mainly in the hindgut endoderm and also at the base of the allantois, their appearance and location at this stage agreeing closely with previous reports on primordial germ cells (PGCs). Embryos from which the cluster area has been removed at the 7-day stage are devoid of PGCs after culture for 48 h, whereas the excised tissue is rich in PGCs. We argue that the cells in the cluster are indeed primordial germ cells, at a stage significantly earlier than any reported previously. This would indicate that the PGC lineage in the mouse is set aside at least as early as 7 dpc, possibly as one of the first 'mesodermal' cell types to emerge, and that its differentiation, as expressed by ALP activity, is gradual.  相似文献   

11.
The anterior visceral endoderm (AVE) plays an important role in anterior-posterior axis formation in the mouse. The AVE functions in part by expressing secreted factors that antagonize growth factor signaling in the proximal epiblast. Here we report that the Secreted frizzled-related protein 5 (Sfrp5) gene, which encodes a secreted factor that can antagonize Wnt signaling, is expressed in the AVE and foregut endoderm during early mouse development. At embryonic day (E) 5.5, Sfrp5 is expressed in the visceral endoderm at the distal tip region of the embryo and at E6.5 in the AVE opposite the primitive streak. In Lim1 embryos, which lack anterior neural tissue and sometimes form a secondary body axis, Sfrp5-expressing cells fail to move towards the anterior and remain at the distal tip of E6.5 embryos. When compared with Dkk1, which encodes another secreted Wnt antagonist molecule present in the visceral endoderm, Sfrp5 and Dkk1 expression overlap but Sfrp5 is expressed more broadly in the AVE. Between E7.5 and 8, Sfrp5 is expressed in the foregut endoderm underlying the cardiac mesoderm. At E8.5, Sfrp5 is expressed in the ventral foregut endoderm that gives rise to the liver. Additional domains of Sfrp5 expression occur in the dorsal neural tube and in the forebrain anterior to the optic placode. These findings identify a gene encoding a secreted Wnt antagonist that is expressed in the extraembryonic visceral endoderm and anterior definitive endoderm during axis formation and organogenesis in the mouse.  相似文献   

12.
The Mdm2 oncoprotein acts as the principal negative regulator of p53 activities and is essential for its control during mouse early development, at least before implantation. We analyzed Mdm2 expression between 7.5 and 9 days post-coitum (dpc) by whole-mount in situ hybridization and report here a novel expression pattern during neural crest development. At 7.5 dpc Mdm2 becomes preferentially expressed at the top of the neural folds. Between 8 and 9 dpc, this preferential expression is also observed in neural crest cells migrating from the closing brain towards craniofacial regions and the first three branchial arches. It persists in the craniofacial mesenchyme and the first branchial arch in 9 dpc embryos. Migrating neural crest cells in the tail region are also preferentially labeled at this stage. At day 9.5 Mdm2 becomes more ubiquitously expressed throughout the embryo as reported before.  相似文献   

13.
14.
Cytokeratins 8 and 19 in the mouse placental development   总被引:9,自引:0,他引:9  
To investigate the expression and biological roles of cytokeratin 19 (K19) in development and in adult tissues, we inactivated the mouse K19 gene (Krt1-19) by inserting a bacterial beta-galactosidase gene (lacZ) by homologous recombination in embryonic stem cells, and established germ line mutant mice. Both heterozygous and homozygous mutant mice were viable, fertile, and appeared normal. By 7.5-8.0 days post coitum (dpc), heterozygous mutant embryos expressed lacZ in the notochordal plate and hindgut diverticulum, reflecting the fact that the notochord and the gut endoderm are derived from the axial mesoderm-originated cells. In the adult mutant, lacZ was expressed mainly in epithelial tissues. To investigate the possible functional cooperation and synergy between K19 and K8, we then constructed compound homozygous mutants, whose embryos died approximately 10 dpc. The lethality resulted from defects in the placenta where both K19 and K8 are normally expressed. As early as 9. 5 dpc, the compound mutant placenta had an excessive number of giant trophoblasts, but lacked proper labyrinthine trophoblast or spongiotrophoblast development, which apparently caused flooding of the maternal blood into the embryonic placenta. These results indicate that K19 and K8 cooperate in ensuring the normal development of placental tissues.  相似文献   

15.
16.
ABC transporters pump out from cells a large number of endo- and xenobiotics including signal molecules and toxins; they are molecular markers of stem/progenitor cells as well. Here, we present the study of temporal/spatial patterns of Abcb1 isoforms and Abcg2 transporter expression and efflux activity in pre- and early postimplantation murine embryos. We found in 2-cell embryos abcb1a, abcb1b and abcg2 mRNAs which were believed to be maternally inherited. The expression of abcb1b and abcg2 genes was found in blastocysts and in 7 days postcoitum (dpc) embryos, while in 9dpc embryos beside of abcb1b/abcg2, the abcb1a gene was expressed. The abcb2 mRNA was detectable neither in pre- nor in postimplantation embryos. Moreover, we analysed temporal/spatial patterns of rhodamine 123/Hoechst 33342 efflux, which mirrors the ABC transporter phenotype, from individual cells of pre- and postimplantation murine embryos. The blastomeres of 2-, 4- and 8-cell embryos had efflux-inactive phenotype. Single, efflux-active cells emerged first in the morulae and their number increased in blastocyst inner cell mass. In 6 and 7 dpc embryos, all embryonic cells hold the efflux-active phenotype. Proximal embryonic endoderm of 6-8 dpc embryos contained two sub-domains: one consisted of efflux-active cells and another one of efflux-inactive cells reflecting polarity of an embryo. Between 7 and 8 dpc, at the onset of organogenesis, the vehement surge of efflux-inactive embryonic cells occurred, and their number increased in 9 dpc embryos, which consequently contained few efflux-active cells.  相似文献   

17.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.  相似文献   

18.
19.
To isolate the genes involved in mouse primordial germ cell (PGC) development, we carried out subtraction cDNA cloning between PGC-derived embryonic germ (EG) cells and inner cell mass-derived embryonic stem cells. Among the genes preferentially expressed in EG cells, we found a gene encoding a receptor tyrosine kinase ErbB3. By in situ hybridization and immunohistochemical staining, the expression of ErbB3 as well as that of ErbB2, a coreceptor for ErbB3, was detected in PGCs in genital ridges at 12.5 dpc (days postcoitum). The expression was, however, downregulated at 14.5 dpc when the PGCs underwent growth cessation. Neuregulin-beta, a ligand for ErbB2 and ErbB3, was also expressed in genital ridges. In addition, a recombinant Neuregulin-beta enhanced the number of PGCs in 12.5-dpc embryos in culture. Taken together, these observations suggest that ErbB signaling controls the growth or survival of PGCs in genital ridges.  相似文献   

20.
Endogenous peroxidase activity was demonstrated in early mouse embryos by means of the diaminobenzidine staining reaction. This enzyme was observed in visceral endoderm on the seventh to eighth day of gestation in vivo, but was no longer detected on the ninth day of development. In cell layers developing from blastocysts or isolated inner cell masses cultured for 96-144 h (developmental stage equivalent to 6-7.5-day-old embryos), diaminobenzidine product was also observed in visceral endodermal cells. Most of the endogenous peroxidase was localized inside or close to the numerous apical vacuoles in the endoderm. Ectoderm, mesoderm, ectoplacental cone, and trophoblast cells did not contain endogenous peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号