首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alginate has been widely used in a variety of biomedical applications including drug delivery and cell transplantation. However, alginate itself has a very slow degradation rate, and its gels degrade in an uncontrollable manner, releasing high molecular weight strands that may have difficulty being cleared from the body. We hypothesized that the periodate oxidation of alginate, which cleaves the carbon-carbon bond of the cis-diol group in the uronate residue and alters the chain conformation, would result in promoting the hydrolysis of alginate in aqueous solutions. Alginate, oxidized to a low extent (approximately 5%), degraded with a rate depending on the pH and temperature of the solution. This polymer was still capable of being ionically cross-linked with calcium ions to form gels, which degraded within 9 days in PBS solution. Finally, the use of these degradable alginate-derived hydrogels greatly improved cartilage-like tissue formation in vivo, as compared to alginate hydrogels.  相似文献   

2.
There is an increased need for alginate materials with both enhanced and controllable mechanical properties in the fields of food, pharmaceutical and specialty applications. In the present work, well-characterized algal polymers and mannuronan were enzymatically modified using C-5 epimerases converting mannuronic acid residues to guluronic acid in the polymer chain. Composition and sequential structure of controls and epimerized alginates were analyzed by (1)H NMR spectroscopy. Mechanical properties of Ca-alginate gels were further examined giving Young's modulus, syneresis, rupture strength, and elasticity of the gels. Both mechanical strength and elasticity of hydrogels could be improved and manipulated by epimerization. In particular, alternating sequences were found to play an important role for the final mechanical properties of alginate gels, and interestingly, a pure polyalternating sample resulted in gels with extremely high syneresis and rupture strength. In conclusion, enzymatic modification was shown to be a valuable tool in modifying the mechanical properties of alginates in a highly specific manner.  相似文献   

3.
Ionic and acid gel formation of epimerised alginates; the effect of AlgE4   总被引:1,自引:0,他引:1  
AlgE4 is a mannuronan C5 epimerase converting homopolymeric sequences of mannuronate residues in alginates into mannuronate/guluronate alternating sequences. Treating alginates of different biological origin with AlgE4 resulted in different amounts of alternating sequences. Both ionically cross-linked alginate gels as well as alginic acid gels were prepared from the epimerised alginates. Gelling kinetics and gel equilibrium properties were recorded and compared to results obtained with the original non-epimerised alginates. An observed reduced elasticity of the alginic acid gels following epimerisation by AlgE4 seems to be explained by the generally increased acid solubility of the alternating sequences. Ionically (Ca(2+)) cross-linked gels made from epimerised alginates expressed a higher degree of syneresis compared to the native samples. An increase in the modulus of elasticity was observed in calcium saturated (diffusion set) gels whereas calcium limited, internally set alginate gels showed no change in elasticity. An increase in the sol-gel transitional rate of gels made from epimerised alginates was also observed. These results suggest an increased possibility of creating new junction zones in the epimerised alginate gel due to the increased mobility in the alginate chain segments caused by the less extended alternating sequences.  相似文献   

4.
Biodegradable hydrogels are attractive 3D environments for cell and tissue growth. In cartilage tissue engineering, mechanical stimulation has been shown to be an important regulator in promoting cartilage development. However, the impact of mechanical loading on the gel degradation kinetics has not been studied. In this study, we examined hydrolytically labile gels synthesized from poly(lactic acid)-b-poly(ethylene glycol)-b-poly-(lactic acid) dimethacrylate macromers, which have been used for cartilage tissue engineering. The gels were subject to physiological loading conditions in order to examine the effects of loading on hydrogel degradation. Initially, hydrogels were formed with two different cross-linking densities and subject to a dynamic compressive strain of 15% at 0.3, 1, or 3 Hz. Degradation behavior was assessed by mass loss, equilibrium swelling and compressive modulus as a function of degradation time. From equilibrium swelling, the pseudo-first-order reaction rate constants were determined as an indication of degradation kinetics. The application of dynamic loading significantly enhanced the degradation time for the low cross-linked gels (P < 0.01) while frequency showed no statistical differences in degradation rates or bulk erosion profiles. In the higher cross-linked gels, a 3 Hz dynamic strain significantly increased the degradation kinetics resulting in an overall faster degradation time by 6 days compared to gels subject to the 0.3 and 1 Hz loads (P < 0.0001). The bioreactor set-up also influenced overall degradation behavior where the use of impermeable versus permeable platens resulted in significantly lower degradation rate constants for both cross-linked gels (P < 0.001). The compressive modulus exponentially decreased with degradation time under dynamic loading. Together, our findings indicate that both loading regime and the bioreactor setup influence degradation and should be considered when designing and tuning a biodegradable hydrogel where mechanical stimulation is employed.  相似文献   

5.
Cellular cross-linking of peptide modified hydrogels   总被引:2,自引:0,他引:2  
Peptide modification of hydrogel-forming materials is being widely explored as a means to regulate the phenotype of cells immobilized within the gels. Alternatively, we hypothesized that the adhesive interactions between cells and peptides coupled to the gel-forming materials would also enhance the overall mechanical properties of the gels. To test this hypothesis, alginate polymers were modified with RGDSP-containing peptides and the resultant polymer was used to encapsulate C2C12 myoblasts. The mechanical properties of these gels were then assessed as a function of both peptide and cell density using compression and tensile tests. Overall, it was found that above a critical peptide and cell density, encapsulated myoblasts were able to provide additional mechanical integrity to hydrogels composed of peptide-modified alginate. This occurred presumably by means of cell-peptide cross-linking of the alginate polymers, in addition to the usual Ca++ cross-linking. These results are potentially applicable to other polymer systems and important for a range of tissue engineering applications.  相似文献   

6.
Murakami S  Aoki N 《Biomacromolecules》2006,7(7):2122-2127
Novel bio-based hydrogels were prepared by cross-linking of microbial poly(gamma-glutamic acid) (PGA) with saccharides such as glucose, maltotriose, and cyclodextrin (CD) in the presence of water-soluble carbodiimide in dimethyl sulfoxide (DMSO) by one-pot synthesis at 25 degrees C for 24 h. The degradation of the gels in alkaline solution (pH 9) at 37 degrees C was also investigated. The PGA gels cross-linked with various neutral saccharides were obtained in relatively high recovery yields by use of a base like 4,4-(dimethylamino)pyridine. The PGA gel cross-linked by glucose showed the highest water absorption of 3000 g/g. The PGA gels cross-linked by CDs showed higher water absorption than those cross-linked by the corresponding linear saccharides. It was revealed that the water absorption of the PGA gel was affected by the cross-linker content and also the structure of cross-linkers as they had an effect on the cross-linking density of the PGA gel. The PGA gels were hydrolyzed under alkaline condition (pH 9) at 37 degrees C. The degradation rate was higher when the cross-linker content of the gel was lower.  相似文献   

7.
Hydrogels have been successfully used to entrap hydrophilic drugs and release them in a controlled fashion; however, the entrapment and release of hydrophobic drugs has not been well studied. We report on the release characteristics of a model hydrophobic drug, the steroid hormone estradiol, entrapped in low (MW 360/MW 550) and high (MW 526/MW 1000) molecular weight poly(ethylene glycol) methacrylate (PEG-MA)/dimethacrylate (PEG-DMA) hydrogels. The cross-linking ratio, temperature, and pH ranged from 10:1 to 10:3, from 33 to 41 degrees C, and from 2 to 12, respectively. The gelation of the PEG-MA/PEG-DMA hydrogel was initiated with UV irradiation. The absence of poly(glutamic acid) in the hydrogel formulation resulted in a loss of pH sensitivity in the acidic range, which was displayed by the hydrogels' similarities in swelling ratios in the pH buffers of pH 2, 4, and 7. Use of high molecular weight polymers resulted in a higher hydrogel swelling (300%) in comparison to the low molecular weight polymers. Drug size was found to be a significant factor. In comparison to 100% estradiol (MW 272) release, the fractional release of insulin (MW 5733) was 12 and 24% in low and high molecular weight gels at pH 2, respectively, and 17% in low molecular weight gels at pH 7. On the release kinetics of the estradiol drug, the hydrogels displayed a non-Fickian diffusion mechanism, which indicated that the media penetration rate is in the same range as the drug diffusion. The synthesis, entrapment, and release of estradiol by the PEG-MA/PEG-DMA hydrogels proved to be successful, but the use of ethanol in the buffers to promote the hydrophobic release of the estradiol in the in vitro environment caused complications, attributed to the process of transesterification.  相似文献   

8.
Hydrolytically labile poly(ethylene glycol)-based hydrogels are fabricated via a Michael-type addition reaction between unsaturated acrylate moieties and nucleophilic thiols. Although these gels offer the advantage of selective, in situ polymerization and potential as biocompatible matrixes for cell and protein encapsulation, a thorough understanding of the complex structure-property relationships that control the macroscopic behaviors of these cross-linked networks before and during hydrolytic degradation does not exist. Therefore, in this work, a novel theoretical model is presented to describe the formation and hydrolytic degradation of the step-polymerized gels. The model accounts for variations in hydrolysis kinetics as well as structural effects such as precursor functionality and the presence of primary cycles or other structural nonidealities that lower the cross-linking efficiency of the networks. Comparison of model predictions and experimental data validate this methodology for optimizing biomaterial design and reveal that structural nonidealities play a key role in determining the degradation behavior of real cross-linked systems. Decreasing precursor concentration and functionality during network formation generate high concentrations of network nonidealities that ultimately lead to higher initial swelling ratios and faster apparent rates of degradation.  相似文献   

9.
Shih H  Lin CC 《Biomacromolecules》2012,13(7):2003-2012
Thiol-ene photoclick hydrogels have been used for a variety of tissue engineering and controlled release applications. In this step-growth photopolymerization scheme, four-arm poly(ethylene glycol) norbornene (PEG4NB) was cross-linked with dithiol containing cross-linkers to form chemically cross-linked hydrogels. While the mechanism of thiol-ene gelation was well described in the literature, its network ideality and degradation behaviors are not well-characterized. Here, we compared the network cross-linking of thiol-ene hydrogels to Michael-type addition hydrogels and found thiol-ene hydrogels formed with faster gel points and higher degree of cross-linking. However, thiol-ene hydrogels still contained significant network nonideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEG-norbornene macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, we found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network cross-linking. In an attempt to manipulate network cross-linking and degradation of thiol-ene hydrogels, we incorporated peptide cross-linkers with different sequences and characterized the hydrolytic degradation of these PEG-peptide hydrogels. In addition, we incorporated a chymotrypsin-sensitive peptide as part of the cross-linkers to tune the mode of gel degradation from bulk degradation to surface erosion.  相似文献   

10.
Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads   总被引:7,自引:0,他引:7  
Microcapsules of alginate cross-linked with divalent ions are the most common system for cell immobilization. In this study, we wanted to characterize the effect of different alginates and cross-linking ions on important microcapsule properties. The dimensional stability and gel strength increased for high-G alginate gels when exchanging the traditional Ca2+ ions with Ba2+. The use of Ba2+ decreased the size of alginate beads and reduced the permeability to immunoglobulin G. Strontium gave gels with characteristics lying between calcium and barium. Interestingly, high-M alginate showed an opposite behavior in combination with barium and strontium as these beads were larger than beads of calcium-alginate and tended to swell more, also resulting in increased permeability. Binding studies revealed that different block structures in the alginate bind the ions to a different extent. More specifically, Ca2+ was found to bind to G- and MG-blocks, Ba2+ to G- and M-blocks, and Sr2+ to G-blocks solely.  相似文献   

11.
In designing a tissue engineering strategy for cartilage repair, selection of both the bioreactor, and scaffold is important to the development of a mechanically functional tissue. The hydrodynamic environment associated with many bioreactors enhances nutrient transport, but also introduces fluid shear stress, which may influence cellular response. This study examined the combined effects of hydrogel cross-linking and the hydrodynamic environment on early chondrocyte response. Specifically, chondrocytes were encapsulated in poly(ethylene glycol) (PEG) hydrogels having two different cross-linked structures, corresponding to a low and high cross-linking density. Both cross-linked gels yielded high water contents (92% and 79%, respectively) and mesh sizes of 150 and 60 A respectively. Cell-laden PEG hydrogels were cultured in rotating wall vessels (RWV) or under static cultures for up to 5 days. Rotating cultures yielded low fluid shear stresses (< or = 0.11 Pa) at the hydrogel periphery indicating a laminar hydrodynamic environment. Chondrocyte response was measured through total DNA content, total nitric oxide (NO) production, and matrix deposition for glycosaminoglycans (GAG). In static cultures, gel cross-linking had no effect on DNA content, NO production, or GAG production; although GAG production increased with culture time for both cross-linked gels. In rotating cultures, DNA content increased, NO production decreased, and overall GAG production decreased when compared to static controls for the low cross-linked gels. For the high cross-linked gels, the hydrodynamic environment had no effect on DNA content, but exhibited similar results to the low cross-linked gel for NO production, and matrix production. Our findings demonstrated that at early culture times, when there is limited matrix production, the hydrodynamic environment dramatically influences cell response in a manner dependent on the gel cross-linking, which may impact long-term tissue development.  相似文献   

12.
The Ca-crosslinked alginate matrix of brown seaweeds may present a limiting factor when microbes decompose algal tissue. Ca-alginate gels made from Ascophyllum nodosum and Laminaria hyperborea stipe alginates were digested in aerated batch reactors at 35 °C and pH 7 using an alginate decomposing inoculum harvested during aerobic degradation of L. hyperborea stipe. The mineralisation of Ca-alginate gels was independent of the substrate source, with consumption rates of alginate similar to those of algal alginates in L. hyperborea stipe. Despite a high guluronate lyase activity, the fractional content of guluronate in the remaining Ca-alginate gels increased during digestion as observed earlier for algal tissue. Thus, the Ca-crosslinked guluronate residues were the most recalcitrant material in both gels and algal tissue.Since the access for enzymes to the Ca-crosslinked guluronate residues probably is restricted, ionic washout may represent an important factor for the degradation process. In total, the alginate in algal tissue and Ca-alginate gels behaved similarly during biodegradation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The rate of diffusion of serum albumin (MW 6.9 x 10(4) D) out of beads of calcium alginate gels depends upon the concentration and uronic acid composition of the alginate (ManA/GulA ratio), the conditions under which the beads are produced, the pH, and the temperature. The diffusion coefficient decreases with increasing alginate concentration, and (ManA/GulA) ratio and with decreasing pH. Diffusion out of the beads, in which the alginate is uniformly distributed (homogeneous gel), is faster than out of the beads in which the alginate is concentrated at the surface (inhomogeneous gel). The temperature dependence of the diffusion coefficient follows the Arrhenius law, with an activation energy of approximately 23 kJ x mol(-1).  相似文献   

14.
Rapid cross-linking of elastin-like polypeptides (ELPs) with hydroxymethylphosphines (HMPs) in aqueous solution is attractive for minimally invasive in vivo implantation of biomaterials and tissue engineering scaffolds. In order to examine the independent effect of the location and number of reactive sites on the chemical cross-linking kinetics of ELPs and the mechanical properties of the resulting hydrogels, we have designed ELP block copolymers comprised of cross-linkable, hydrophobic ELP blocks with periodic Lys residues (A block) and aliphatic, hydrophilic ELP blocks with no cross-linking sites (B block); three different block architectures, A, ABA, and BABA were synthesized in this study. All ELP block copolymers were rapidly cross-linked with HMPs within several minutes under physiological conditions. The inclusion of the un-cross-linked hydrophilic block, its length relative to the cross-linkable hydrophobic block, and the block copolymer architecture all had a significant effect on swelling ratios of the cross-linked hydrogels, their microstructure, and mechanical properties. Fibroblasts embedded in the ELP hydrogels survived the cross-linking process and remained viable for at least 3 days in vitro when the gels were formed from an equimolar ratio of HMPs and Lys residues of ELPs. DNA quantification of the embedded cells indicated that the cell viability within triblock ELP hydrogels was statistically greater than that in the monoblock gels at day 3. These results suggest that the mechanical properties of ELP hydrogels and the microenvironment that they present to cells can be tuned by the design of the block copolymer architecture.  相似文献   

15.
Hyaluronic acid (HA) is a naturally occurring polymer that holds considerable promise for tissue engineering applications. Current cross-linking chemistries often require a coupling agent, catalyst, or photoinitiator, which may be cytotoxic, or involve a multistep synthesis of functionalized-HA, increasing the complexity of the system. With the goal of designing a simpler one-step, aqueous-based cross-linking system, we synthesized HA hydrogels via Diels-Alder "click" chemistry. Furan-modified HA derivatives were synthesized and cross-linked via dimaleimide poly(ethylene glycol). By controlling the furan to maleimide molar ratio, both the mechanical and degradation properties of the resulting Diels-Alder cross-linked hydrogels can be tuned. Rheological and degradation studies demonstrate that the Diels-Alder click reaction is a suitable cross-linking method for HA. These HA cross-linked hydrogels were shown to be cytocompatible and may represent a promising material for soft tissue engineering.  相似文献   

16.
The entrapment of enzymes, drugs, cells or tissue fragments in alginates cross-linked with Ca2+ or Ba2+ has great potential in basic research, biotechnology and medicine. The swelling properties and, in turn, the mechanical stability are key factors in designing an optimally cross-linked hydrogel matrix. These parameters depend critically on the cross-linking process and seemingly minor modifications in manufacture have a large impact. Thus, sensitive and non-invasive tools are required to determine the spatial homogeneity and efficacy of the cross-linking process. Here, we show for alginate microcapsules (between 400 µm and 600 µm in diameter) that advanced 1H NMR imaging, along with paramagnetic Cu2+ as contrast agent, can be used to validate the cross-linking process. Two- and three-dimensional images and maps of the spin-lattice relaxation time T1 of Ba2+ cross-linked microcapsules exposed to external Cu2+ yielded qualitative as well as quantitative information about the accumulation of Cu2+ within and removal from microcapsules upon washing with Cu2+ free saline solution. The use of Cu2+ (having a slightly higher affinity constant to alginate than Ba2+) for gelling gave a complementary insight into the spatial homogeneity of the cross-linking process together with information about the mechanical stability of the microcapsules. The potential of this technique was demonstrated for alginates extracted from two different algal sources and cross-linked either externally by the conventional air-jet dropping method or internally by the "crystal gun" method.  相似文献   

17.
Various collagens were extracted and purified from human placenta after partial pepsin digestion. We prepared type III + I (57:43), enriched type I, type III, and type IV collagens on an industrial level, and studied their biological properties with MRC5 fibroblast cells. Using the process of contraction of a hydrated collagen lattice described by Bell, we found tha the contraction rate was dependent on collagen type composition. The contraction was faster and more pronounced with pepsinized type I collagen than with pepsinized type III + I (57:43) collagen; the lowest rate was obtained with the pepsinized type III collagen. Using a new technique of collagen cross-linking, a gel was made with type IV collagen. This cross-linking procedure, based on partial oxidation of sugar residues and hydroxylysine by periodic acid, followed by neutralization, resulted in an increased number of natural cross-link bridges between oxidized and nonoxidized collagen molecules, without internal toxic residues. The fibroblasts were unable to contract type IV/IVox collagen gels. The type IV/IVox collagen gel was transparent and its amorphous ultrastructure lacked any visible striated fibrils. Fibroblast cells exhibited atypical behavior in these type IV/IVox collagen gels as evidenced by optical and electron microscopy. The penetration of fibroblasts could be measured. Fibroblasts penetrated faster in type IV/IVox collagen gels than in untreated type III + I collagen gels. The lowest rate of penetration was obtained with cross-linked type III + I gels. Fibroblast proliferation was similar on untreated or cross-linked type III + I collagen gels and slightly increased on type IV/IVox collagen gels, suggesting that this cross-linking procedure was not toxic.  相似文献   

18.
Alginates are polysaccharides consisting of beta-D-mannuronate and alpha-L-guluronate units. In the presence of bivalent cations like calcium the guluronate blocks form physically cross-linked gels. The gelation properties of alginates play an important role in the stability of extracellular polymer substances and in the food industry. When stock solutions of Ca2+ ions and alginate are mixed, the gelation starts before the Ca2+ ions are evenly distributed, which leads to non-uniform gels. In this contribution, Ca alginate gels were prepared by in situ gelation using glucono-delta-lactone and CaCO3. In this way, uniform gels could be prepared directly in the measuring cell. Below a critical concentration, highly viscous solutions were obtained, which were below the critical point of gel formation. In these solutions at low rotational speeds a Schlieren peak arose, which became smaller and steeper with increasing time until a new meniscus could be detected. This behaviour is in contrast to the peak broadening due to diffusion after a synthetic boundary was formed. Evaluation of the data leads to negative diffusion coefficients. It has been shown by others that the mutual diffusion coefficient must be negative in the spinodal region. This phenomena is known as uphill diffusion and leads to phase separation of a binary system. The formation of the gel phase in this case is therefore discussed as uphill diffusion.  相似文献   

19.
Diffusion characteristics of calcium alginate gels.   总被引:3,自引:0,他引:3  
The diffusivity of a protein solute (bovine serum albumin) within calcium alginate gels made from sodium alginate of different guluronic acid content was determined. It was found that protein diffusion within alginate gels, prepared to be isotropic in structure, was greatest for gels prepared from sodium alginate of low guluronic acid content as opposed to those prepared from sodium alginate of high guluronic acid content. This finding was explained in terms of the difference in flexibility of the polymer backbone of the two alginates. The greater the polymer backbone flexibility, the greater the solute diffusivity within the gel.  相似文献   

20.
Microorganisms have become key components in many biotechnological processes to produce various chemicals and biofuels. The encapsulation of microbial cells in calcium cross-linked alginate gel beads has been extensively studied due to several advantages over using free cells. However, industrial use of alginate gel beads has been hampered by the low structural stability of the beads. In this study, we demonstrate that the incorporation of interpenetrating covalent cross-links in an ionically cross-linked alginate gel bead significantly enhances the bead's structural durability. The interpenetrating network (IPN) was prepared by first cross-linking alginate chemically modified with methacrylic groups, termed methacrylic alginate (MA), with calcium ions and subsequently conducting a photo cross-linking reaction. The resulting methacrylic alginate gel beads (IPN-MA) exhibited higher stiffness, ultimate strength and ultimate strain and also remained more stable in media either subjected to high shear or supplemented with chelating agents than calcium cross-linked alginate gel beads. Furthermore, yeast cells encapsulated in IPN-MA gel beads remained more metabolically active in ethanol production than those in calcium cross-linked alginate gel beads. Overall, the results of this study will be highly useful in designing encapsulation devices with improved structural durability for a broad array of prokaryotic and eukaryotic cells used in biochemical and industrial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号