首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
蒋芝华  吕建利 《生理学报》1995,47(3):281-286
将胎龄为17d的大鼠胚胎海马(移植物)移植到同种成年大鼠(宿主)腹海马,90d后,用TH免疫细胞化学方法对海马移植物内神经元与儿茶酚胺(catecholamine CA)能纤维之间的突触联系进行上观察。免疫组织化学显示,宿主海马内有大量TH免疫反应纤维。这些纤维是直径为0.5-1μm的细纤维。它们的分布密度是,齿回门区和CA3区透明层内较密集,分子层次之,锥体细胞层和颗粒细胞层内较稀疏。在移植物的  相似文献   

2.
本文利用脑内移植技术,研究胚胎海马修复成年大鼠隔核—齿回—海马本体的神经元连接用5μg秋水仙碱(colchicine)以局部注射的方式,选择性地损毁大鼠海马齿回的颗粒细胞。注射后1.5月,在损毁区未见颗粒细胞和苔状纤维残留;在齿回分子层,乙酰胆碱酯酶染色所显示的精细分层消失。取20天胚胎的海马并移植到宿主的损毁区,在30—40天实验期内,移植物在宿主脑内生长良好。脑切片经Timm染色,可以观察到当移植物齿回颗粒细胞靠近宿主CA 3区锥体细胞、两者之间又无胶质细胞疤痕阻挡时,移植物的苔状纤维沿宿主CA 3区透明层生长并接近CA 1区,基本上恢复了宿主原来的支配模式。在移植物的齿回颗粒细胞区,乙酰胆碱酯酶(AChE)的反应要比移植物的锥体细胞区更为显著。上述结果表明神经移植物能修复被损毁的隔核-齿回-海马本体的神经元连接。  相似文献   

3.
最近,N.Sunde等用X射线损伤新生鼠双侧海马区域,随后将另一新生鼠的正常齿状回组织移植入受损伤鼠单侧海马区域(另一侧作为对照)。发现:在非胆碱能、非单胺能神经系统,与胆碱能、单胺能系统一样,移植物和宿主神经元能够建立相互联系,并且移植物可恢复宿主已被破坏的神经联系。80%以上的齿状回颗粒细胞在出生以后形成。出生后,X射线照射几乎能选择性地使颗粒细胞数减少到正常的15%,残存的颗粒细胞传入纤维形成散乱的扁平状突起伸向CA3区维体细胞。同时苔藓纤维突起明显减少。这种X射线照射模型在许多方面与自然发生的神经细胞恶性改变及早期退行性疾病相同。将  相似文献   

4.
38只Wistar大鼠双侧穹窿-海马伞损伤后.以被动回避反应为指标观察到记忆明显受损,与损伤前相比,有记忆动物自65.3%降至13.6%,两者差别非常显著。于穹窿-海马伞损伤后记忆丧失动物(n=15)自体一侧分离出颈上神经节(SCG),切为2-3块并在室温下孵育于20—50μg/ml2.5sNGF中1—2h,而后移植于自体双侧海马背侧,移植4周后观察到动物记忆明显恢复,恢复记忆的动物数占73.3%。在行为实验基础上应用荧光组化方法检查了移植细胞成活情况并测量了海马内去甲肾上腺素(NA)的含量。移植后2周海马内NA含量比损伤组有明显上升。移植后一个月,可见部分移植细胞成活并有神经纤维生长。实验表明.穹窿-海马伞损伤大鼠海马内自体移植SCG,通过神经递质的局部补充对动物丧失的记忆能力具有一定改善作用。  相似文献   

5.
神经系统的形成依赖于细胞间的互相粘连。本文综述了神经细胞粘连分子(NCAM)及其多聚唾液酸(PSA)组份对神经发育和再生的作用。NCAM的基本功能是介导细胞粘连,PSA则由于其特殊的分子结构而降低细胞间的粘连。研究表明,鸡胚的发育过程中,PSA含量在三个关键时期表达的高低决定了运动神经元能否准确地识别和支配肌肉。成年大鼠周围神经损伤后,肌肉内NCAM含量的高低决定于该肌肉的神经支配状况。成年大鼠脑内,切断内嗅皮层与海马的神经联系,发现齿回外分子层PSA含量显著增加,并至少可持续60天。已有的研究资料提示在去神经靶区域PSA的重新表达可能有利于移植神经元轴突的生长并与宿主重建突触联系。  相似文献   

6.
Fan XT  Cai WQ 《生理科学进展》2002,33(4):339-342
发育轴突向正确的靶位生长是建立精确神经环路的基础。海马内主要的传入通路是内嗅皮层-海马通路,兴奋性合缝,联合系统中隔投射,它们以层状形式终止于齿回与Ammon角的靶神经元。在海马内部,齿回与CA3区的苔藓纤维,CA3区与CA1之间均建立了特异的纤维联接系统。细胞培养测定和包括基因敲除在内的分子生物学策略研究表明,在发育过程中复杂的导向信号网络对海马内联系的形成有重要调节作用。分泌性Ⅲ型semaphorins,netrin 1和Slit蛋白及局部膜或基底锚分子如ephrin A亚家族配体,共同介导了海马内联系的发育。  相似文献   

7.
目的研究生长休止蛋白7(Gas7)在大鼠海马和齿状回不同发育阶段的表达。方法采用免疫组织化学方法观察Gas7在SD大鼠胚胎第18d(E18)、新生(P0)、生后第7d(P7)、P14、P21和成年海马和齿状回中的表达和分布。结果在大鼠脑海马和齿状回部位的冠状切片上,Gas7免疫反应阳性产物主要表达在海马的锥体细胞、齿状回的颗粒细胞和门区的多形层细胞。随着发育的进程,在海马,Gas7较早表达在CA3区,其次是CA2和CA1区;在齿状回,Gas7在外臂的表达早于内臂,在颗粒细胞层的表达是按先外层后内层的顺序。在围生期,Gas7在海马和齿状回各区的表达逐渐增强,至P14达到高峰,后逐渐降低,至P21其表达强度和分布趋于恒定至成年水平。结论 Gas7在大鼠海马和齿状回发育过程中的动态表达具有时间和空间上的特异性,提示Gas7可能参与了海马和齿状回形态形成和功能成熟的调控。  相似文献   

8.
大鼠隔—海马通路损伤对海马内递质含量及酶活力的影响   总被引:3,自引:0,他引:3  
汪家政  柳川 《生理学报》1990,42(3):289-294
单侧切断大鼠海马缴和部分穹窿可使海马部分去神经。损伤后7d,海马内胆碱能系统中乙酰胆碱(ACh)含量下降72.5%,胆碱乙酰基转移酶(ChAT)活力下降45.7%,胆碱酯酶活力下降52.2%,在单胺能系统中,去甲肾上腺素(NA)含量下降16.3%,多巴胺(DA)含量下降31.3%,5-羟色胺含量下降30.3%。在损伤过程中,海马内氨基酸含量没有改变。实验结果表明,海马缴和穹窿是脑内胆碱能和单胺能传入神经到达海马靶区的部分共同通路。  相似文献   

9.
Lu WG  Chen H  Wang D  Li FG  Zhang SM 《生理学报》2007,59(1):51-57
全能区域非特异性的胚胎干细胞是研究成体不同脑区控制干细胞分化能力的十分有力的工具。胚胎干细胞源性神经前体细胞移植入成体脑后可分化为功能性神经元,但是未分化的胚胎干细胞在成体脑内各个部位的存活、生长与分化的潜能差异尚不清楚。本文旨在探讨成体脑组织对胚胎干细胞的影响及胚胎干细胞在成体脑内的一系列行为。将少量转绿色荧光蛋白未分化的小鼠胚胎干细胞移植入成体大鼠脑内不同部位,分别于移植5、14和28d后处死大鼠,进行形态学观察及免疫组化定性,以了解未分化的小鼠胚胎干细胞在大鼠脑内不同区域的存活、生长与分化。结果发现未分化的小鼠胚胎干细胞可逐步整合入受体组织并向nestin阳性神经前体细胞分化。移植细胞及其后裔在海马生长最为旺盛,而在隔区最差(P〈0.01);移植细胞分化为神经干细胞的效率也是在海马最高,而在隔区最低(P〈0.01)。提示只有部分脑区适合胚胎干细胞及其后裔生存,并提供促进其分化的有益环境。因此,由于位置特异的微环境因子及环境因素的存在,宿主组织特性对决定中枢神经系统疾病的细胞替代疗法策略是相当重要的。  相似文献   

10.
目的:观察横断大鼠穹窿-海马伞对其海马突触形态的影响。方法:横断大鼠双侧穹窿-海马伞(FF)建立动物模型,于手术前、后对大鼠进行迷宫检查,重点对海马CA3区多形层突触界面的结构参数进行定量分析。结果:突触界面曲率减小,突触间隙宽度加大,突触后膜致密物质厚度明显变薄,穿孔性突触的比例也有不同程度降低。结论:横断穹窿-海马伞引起海马CA3区突触形态明显改变,推测海马内Ach的正常水平对维持海马CA3区突触界面超微结构有重要作用。  相似文献   

11.
The postnatal development of acetylcholinesterase (AChE) activity in the hippocampal formation of the developing rat brain, as demonstrated histochemically by the copper-thiocholine technique, serves as a marker for the ingrowing cholinergic afferent fibers. The discrete laminar pattern of staining characteristic of the adult hippocampal formation develops entirely after birth. Stain deposit is observable earliest (about 4 days after birth) at the septal end of the hippocampus. During the following week, AChE activity can be demonstrated in successively temporal segments until, about 11 days after birth, all parts of the hippocampal formation exhibit activity. Within each segment, the pattern of developing activity suggests association with three distinct fiber projections emanating from the fimbria, each with its own characteristic time of appearance and rate of growth: (1) a projection through stratum oriens of hippocampus regio inferior to stratum oriens of regio superior; (2) fibers which cross straum pyramidale of regio inferior, run in the suprapyramidal zone of that region and continue into the supra- and infragranular zones in the external leaf of the dentate gyrus; (3) a projection through stratum oriens of regio inferior which continues into the supra- and infragranular zones in the internal leaf of the dentate gyrus.  相似文献   

12.
The expression of an insect (Acheta domesticus) adult glial cell-specific antigen, 5B12 undergoes major changes during development. The 5B12 antigen is detected as early as 20-25% of embryonic development, when immunoreactivity is distributed throughout the periphery, present at the luminal surface of epithelial cells which compose developing limb buds, sensory appendages, and the body cavity. The antigen is also localized on the cell surface of neural elements within commissural tracts in the embryonic CNS. 5B12 is secreted extracellularly in the periphery, where it is associated with the embryonic basal lamina in developing cercal sensory appendages. Luminal surface expression is transient, and disappears by 95% of embryonic development. As development proceeds, 5B12 distribution becomes more restricted, so that in the adult the antigen is predominantly associated with specific glial elements within the nervous system where it occurs as a specialized component of the extracellular matrix. The 5B12 antigen is also associated with discrete central and peripheral fiber tracts. Antigen 5B12 is present in whole embryos and in the adult CNS as a Mr 185-kDa glycoprotein. Distinct carbohydrate moieties with chondroitin sulfate-like properties are situated on the 5B12 epitope. Thus the glia-associated 5B12 macromolecule has the characteristics of a small proteoglycan. Based upon features of its distribution, pattern of spatiotemporal expression, and biochemical properties, it is speculated that 5B12 participates in events related sequentially to the development and the function of the insect nervous system.  相似文献   

13.
1. Cultured neurons from embryonic chick sympathetic ganglia or dorsal root ganglia grow nerve fibers extensively on simple substrata containing fibronectin, collagens (types I, III, IV), and especially laminin. 2. The same neurons cultured on substrata containing glycosaminoglycans grow poorly. Glycosaminoglycans (heparin) inhibit nerve fiber growth on fibronectin substrata. 3. Proteolytic fragments of fibronectin support nerve fiber growth only when the cell attachment region is intact. For example, a 105 kD fragment, encompassing the cell attachment region, supports growth when immobilized in a substratum, but a 93 kD subfragment, lacking the cell attachment region, is unable to support fiber growth. When it is added to the culture medium, the 105 kD fragment inhibits fiber growth on substrata containing native fibronectin. 4. In culture medium lacking NGF, DRG neurons extend nerve fibers only on laminin and not on fibronectin, collagen or polylysine. Studies with radioiodinated laminin indicate that laminin binds with a relatively high affinity (kd approximately equal to 10(-9) M) to DRG neurons, and to a variety of other neural cells (NG108 cells, PC12 cells, rat astrocytes, chick optic lobe cells). We have isolated a membrane protein (67 kD) by affinity chromatography on laminin columns and are characterizing this putative laminin receptor. 5. Dissociated DRG neurons or ganglionic explants cultured on complex substrata consisting of tissue sections of CNS or PNS tissues extend nerve fibers onto the PNS (adult rat sciatic nerve) but not CNS (adult rat optic nerve) substrata. Other tissue substrata which support fiber growth in vivo (embryonic rat spinal cord, goldfish optic nerve) support growth in culture. While substrata from adult CNS, which support meager regeneration in vivo (adult rat spinal cord) support little fiber growth in culture. 6. Ganglionic explants cultured in a narrow space between a section of rat sciatic nerve and optic nerve grow preferentially onto the sciatic nerve suggesting that diffusible growth factors are not responsible for the differential growth on the two types of tissues. 7. Dissociated neurons adhere better to sections of sciatic nerve than optic nerve. Laminin, rather than fibronectin or heparan sulfate proteoglycan, is most consistently identifiable by immunocytochemistry in tissues (sciatic nerve, embryonic spinal cord, goldfish optic nerve) which support nerve fiber growth. Taken together, these data suggest that ECM adhesive proteins are important determinants of nerve regeneration.  相似文献   

14.
During development, many CNS projection neurons establish topographically ordered maps in their target regions. Myelin-associated inhibitors of neurite growth contribute to the confinement of fiber tracts during development and limit plastic changes after CNS projections have been formed. Neutralization of myelin-associated growth inhibitors leads to an expansion of the retinal innervation of the superior colliculus (SC). In the lesioned adult mammalian CNS, these long projection neurons are usually unable to regrow axons over long distances after lesion due to myelin-associated inhibitors, which interfere with axonal growth in vivo and in vitro. Application of a specific antibody directed against myelin-inhibitors (IN-1) promotes regrowth of corticospinal tract or retinal ganglion cell axons. In the present study, we asked whether application of an antibody to myelin-associated growth inhibitors would lead to disturbances of target-specific axon guidance. To examine this issue, we used an in vitro model, the “stripe assay,” to examine the behavior of rat retinal ganglion cell axons on membranes from embryonic and deafferented adult rat SC. On membrane preparations from embryonic rat SC, retinal fibers avoid posterior tectal membranes, possibly due to the presence of a repulsive factor. Nasal retinal axons show a random growth pattern. On membranes prepared from the deafferented adult rat SC, temporal and nasal axons prefer to grow on membranes prepared from their specific target region, which suggests the involvement of target-derived attractive guidance components. The results of the present study show that retinal axons grow significantly faster in the presence of IN-1 antibody that neutralizes myelin-associated growth inhibitors present in the membrane preparations from the adult rat SC. IN-1 antibody, however, does not interfere with specific axonal guidance. This suggests that axonal guidance and specific target finding are independently regulated in retinal axons. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Falugi C  Davoli C 《Tissue & cell》1993,25(3):311-323
This histochemical-immunohistochemical study was performed on the earthworm Eisenia foetida at different developmental stages, to investigate the presence and distribution of cholinergic molecules (AChE, BuChE, alpha-bungarotoxin-binding sites), several biogenic amines (5HT and catecholamines), and some immunologically-related peptides (somatostatin. FMRF-amide, VIP, substance-P, bombesin). The results showed that the pattern of labelling for the markers is different at different stages. In summary, cholinesterases appeared widely distributed in the early embryonic stages. They then were localized in particular areas of the developing nerve and muscle tissues, whereas in newborn and adult earthworms they were restricted to ventral muscular fibers and to some CNS cells. Biogenic amines were constantly present in the embryonic and adult nervous tissues. Immunologically-related peptides were detectable after organogenesis. Our results provide indirect evidence for a role of cholinesterases in regulating early intercellular communications, neurogenesis and myogenesis, and support the hypothesis that some conservative sequences of messenger peptides arose very early in evolution.  相似文献   

16.
Frizzled transmembrane proteins (Fzd) are receptors of Wnts, and they play key roles during central nervous system (CNS) development in vertebrates. Here we report the expression pattern of Frizzled10 in mouse CNS from embryonic stages to adulthood. Frizzled10 is expressed strongly at embryonic days E8.5 and E9.5 in the neural tube and tail bud. At E10.5, Frizzled10 is expressed in the forebrain vesicle, the fourth ventricle and the dorsal spinal cord. From E12.5 to E16.5, Frizzled10 expression is mainly observed in the cortical hem/fimbria, the neuroepithelium of the third ventricular zone, midbrain, developing cerebellum, and dorsal spinal cord. At P0, with the exception of expression in the fimbria, Frizzled10 mRNA expression is limited to specific nuclei including the ventral posterior thalamic nucleus (VP) and the dorsal lateral geniculate nucleus (DLG) in the developing thalamus as well as in the proliferative ventricular zone of the developing cerebellum. From P20 to adult, Frizzled10 mRNA is detected only in the internal capsule (ic). Our data show that expression of Frizzled10 is very strong during embryonic development of the CNS and suggest that Frizzled10 may play an essential role in spatial and temporal regulation during neural development.  相似文献   

17.
Both cholinergic and adrenergic stimulation can induce sweat secretion in human eccrine sweat glands, but whether cholinergic and adrenergic stimulation play same roles in rat eccrine sweat glands is still controversial. To explore the innervations, and adrenergic- and cholinergic-induced secretory response in developing and developed rat eccrine sweat glands, rat hind footpads from embryonic day (E) 15.5–20.5, postanal day (P) 1–14, P21 and adult were fixed, embedded, sectioned and subjected to immunofluorescence staining for general fiber marker protein gene product 9.5 (PGP 9.5), adrenergic fiber marker tyrosine hydroxylase (TH) and cholinergic fiber marker vasoactive intestinal peptide (VIP), and cholinergic- and adrenergic-induced sweat secretion was detected at P1–P21 and adult rats by starch-iodine test. The results showed that eccrine sweat gland placodes of SD rats were first appeared at E19.5, and the expression of PGP 9.5 was detected surrounding the sweat gland placodes at E19.5, TH at P7, and VIP at P11. Pilocarpine-induced sweat secretion was first detected at P16 in hind footpads by starch-iodine test. There was no measurable sweating when stimulated by alpha- or beta-adrenergic agonists at all the examined time points. We conclude that rat eccrine sweat glands, just as human eccrine sweat glands, co-express adrenergic and cholinergic fibers, but different from human eccrine sweat glands, cholinergic- rather than adrenergic-induced sweating plays a role in the developing and developed rat eccrine sweat glands.  相似文献   

18.
Rollenhagen  A.  Czaniera  R.  Albert  M.  Wintergerst  E. S.  Schachner  M. 《Brain Cell Biology》2001,30(4):337-351
The HNK-1 carbohydrate, an unusual 3′-sulfated glucuronic acid epitope characteristic of many neural recognition molecules, serves as a ligand in neural cell interactions and is differentially expressed in the quadriceps and saphenous branches of the femoral nerve in the PNS of adult mice. Based on these observations, we investigated the possibility that the HNK-1 carbohydrate may be differentially distributed in neurons and fiber tracts also in the CNS thereby contributing to different targeting and guidance mechanisms. We have used antibodies with different HNK-1 epitope specificities to probe for subtle differences in expression patterns. In the adult mouse cerebellum the HNK-1 carbohydrate is detectable in stripe-like compartments in the molecular and Purkinje cell layers, whereas N-CAM and its associated α2,8 polysialic acid does not show this compartmentation. In the adult hippocampus, the HNK-1 carbohydrate localizes to perineuronal nets of inhibitory interneurons and marks the inner third of the molecular layer of the dentate gyrus. In the adult spinal cord, HNK-1 labeling is most pronounced in gray matter areas. White matter enriched regions show differential labeling with regard to fiber tracts and antibody specificity. Whereas the different antibodies do not show differences in staining in the cerebellum and the hippocampus, they show differences in staining pattern of fiber tracts and motoneurons in the spinal cord. The HNK-1 expression pattern also differed in the adult spinal cord from that observed at embryonic day 14 and postnatal day 14. Our observations suggest a functional role in the specification of functionally discrete compartments in different areas of the CNS and during development.  相似文献   

19.
Summary Serotonin-immunoreactive (5-HTi) neurons were mapped in the larval central nervous system (CNS) of the dipterous flies Calliphora erythrocephala and Sarcophaga bullata. Immunocytochemistry was performed on cryostat sections, paraffin sections, and on the entire CNS (whole mounts).The CNS of larvae displays 96–98 5-HTi cell bodies. The location of the cell bodies within the segmental cerebral and ventral ganglia is consistent among individuals. The pattern of immunoreactive fibers in tracts and within neuropil regions of the CNS was resolved in detail. Some 5-HTi neurons in the CNS possess axons that run through peripheral nerves (antenno-labro-frontal nerves).The suboesophagealand thoracico-abdominal ganglia of the adult blowflies were studied for a comparison with the larval ventral ganglia. In the thoracico-abdominal ganglia of adults the same number of 5-HTi cell bodies was found as in the larvae except in the metathoracic ganglion, which in the adult contains two cell bodies less than in the larva. The immunoreactive processes within the neuropil of the adult thoracico-abdominal ganglia form more elaborate patterns than those of the larvae, but the basic organization of major fiber tracts was similar in larval and adult ganglia. Some aspects of postembryonic development are discussed in relation to the transformation of the distribution of 5-HTi neurons and their processes into the adult pattern.  相似文献   

20.
Multiple classes of precursor cells have been isolated and characterized from the developing spinal cord including multipotent neuroepithelial (NEP) stem cells and lineage-restricted precursors for neurons (NRPs) and glia (GRPs). We have compared the survival, differentiation and integration of multipotent NEP cells with lineage-restricted NRPs and GRPs using cells isolated from transgenic rats that express the human placental alkaline phosphatase gene. Our results demonstrate that grafted NEP cells survive poorly, with no cells observed 3 days after transplant in the adult hippocampus, striatum and spinal cord, indicating that most CNS regions are not compatible with transplants of multipotent cells derived from fetal CNS. By contrast, at 3 weeks and 5 weeks post-engraftment, lineage-restricted precursors showed selective migration along white-matter tracts and robust survival in all three CNS regions. The grafted precursors expressed the mature neuronal markers NeuN and MAP2, the astrocytic marker GFAP, the oligodendrocytic markers RIP, NG2 and Sox-10, and the synaptic marker synaptophysin. Similar behavior was observed when these precursors were transplanted into the injured spinal cord. Predifferentiated, multipotent NEP cells also survive and integrate, which indicates that lineage-restricted CNS precursors are well suited for transplantation into the adult CNS and provide a promising cellular replacement candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号