首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
CcpA, the repressor/activator mediating carbon catabolite repression and glucose activation in many Gram-positive bacteria, has been purified from Bacillus megaterium after fusing it to a His tag. CcpA-his immobilized on a Ni-NTA resin specifically interacted with HPr phosphorylated at seryl residue 46. HPr, a phosphocarrier protein of the phosphoenolpyruvate: glycose phosphotransferase system (PTS), can be phosphorylated at two different sites: (i) at His-15 in a PEP-dependent reaction catalysed by enzyme I of the PTS; and (ii) at Ser-46 in an ATP-dependent reaction catalysed by a metabolite-activated protein kinase. Neither unphosphorylated HPr nor HPr phosphorylated at His-15 nor the doubly phosphorylated HPr bound to CcpA. The interaction with seryl-phosphorylated HPr required the presence of fructose 1,6-bisphosphate. These findings suggest that carbon catabolite repression in Gram-positive bacteria is a protein kinase-triggered mechanism. Glycolytic intermediates, stimulating the corresponding protein kinase and the P-ser-HPr/CcpA complex formation, provide a link between glycolytic activity and carbon catabolite repression. The sensitivity of this complex formation to phosphorylation of HPr at His-15 also suggests a link between carbon catabolite repression and PTS transport activity.  相似文献   

3.
Carbon catabolite repression of the gnt operon of Bacillus subtilis is mediated by the catabolite control protein CcpA and by HPr, a phosphocarrier protein of the phosphotransferase system. ATP-dependent phosphorylation of HPr at Ser-46 is required for carbon catabolite repression as ptsH1 mutants in which Ser-46 of HPr is replaced with an unphosphorylatable alanyl residue are resistant to carbon catabolite repression. We here demonstrate that mutation of His-15 of HPr, the site of phosphoenolpyruvate-dependent phosphorylation, also prevents carbon catabolite repression of the gnt operon. A strain which expressed two mutant HPrs (one in which Ser-46 is replaced by Ala [S46A HPr] and one in which His-15 is replaced by Ala [H15A HPr]) on the chromosome was barely sensitive to carbon catabolite repression, although the H15A mutant HPr can be phosphorylated at Ser-46 by the ATP-dependent HPr kinase in vitro and in vivo. The S46D mutant HPr which structurally resembles seryl-phosphorylated HPr has a repressive effect on gnt expression even in the absence of a repressing sugar. By contrast, the doubly mutated H15E,S46D HPr, which resembles the doubly phosphorylated HPr because of the negative charges introduced by the mutations at both phosphorylation sites, had no such effect. In vitro assays substantiated these findings and demonstrated that in contrast to the wild-type seryl-phosphorylated HPr and the S46D mutant HPr, seryl-phosphorylated H15A mutant HPr and H15E,S46D doubly mutated HPr did not interact with CcpA. These results suggest that His-15 of HPr is important for carbon catabolite repression and that either mutation or phosphorylation at His-15 can prevent carbon catabolite repression.  相似文献   

4.
5.
6.
The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.  相似文献   

7.
The PTSH gene, encoding the phosphotransferase protein HPr, from Clostridium acetobutylicum ATCC 824 was identified from the genome sequence, cloned and shown to complement a PTSH mutant of Escherichia coli. The deduced protein sequence shares significant homology with HPr proteins from other low-GC gram-positive bacteria, although the highly conserved sequence surrounding the Ser-46 phosphorylation site is not well preserved in the clostridial protein. Nevertheless, the HPr was phosphorylated in an ATP-dependent manner in cell-free extracts of C. Acetobutylicum. Furthermore, purified His-tagged HPr from Bacillus Subtilis was also a substrate for the clostridial HPr kinase/phosphorylase. This phosphorylation reaction is a key step in the mechanism of carbon catabolite repression proposed to operate in B. Subtilis and other low-GC gram-positive bacteria. Putative genes encoding the HPr kinase/phosphorylase and the other element of this model, namely the catabolite control protein CcpA, were identified from the C. Acetobutylicum genome sequence, suggesting that a similar mechanism of carbon catabolite repression may operate in this industrially important organism.  相似文献   

8.
Significance of HPr in catabolite repression of alpha-amylase.   总被引:3,自引:1,他引:2       下载免费PDF全文
CcpA and HPr are presently the only two proteins implicated in Bacillus subtilis global carbon source catabolite repression, and the ptsH1 mutation in the gene for the HPr protein was reported to relieve catabolite repression of several genes. However, alpha-amylase synthesis by B. subtilis SA003 containing the ptsH1 mutation was repressed by glucose. Our results suggest HPr(Ser-P) may be involved in but is not required for catabolite repression of alpha-amylase, indicating that HPr(Ser-P) is not the sole signaling molecule for CcpA-mediated catabolite repression in B. subtilis.  相似文献   

9.
10.
11.
12.
13.
The serine46-phosphorylated form of the bacterial protein HPr fulfils an essential function in carbon catabolite repression (CCR). Using molecular dynamics (MD) we studied the effect of Ser46 phosphorylation on the molecular properties of HPr and its capability to act as the co-repressor of carbon catabolite protein A (CcpA). The calculated pK (a) values for a representative set of HPr(Ser46P) structures indicate that the phosphate group of HPr(Ser46P) exists predominantly in the unprotonated form under neutral conditions. A hydrogen bond detected in HPr(Ser46P) between one phosphate-group oxygen and a side-chain hydrogen of Asn43-an amino acid conserved in all HPr proteins of Gram-positive bacteria that regulate their carbon consumption by CCR-might fulfil an important role in CcpA-HPr(Ser46P) complex formation. MD simulations show that the Ser46P-Asn43 hydrogen bond present in the unbound structure is replaced by intermolecular interactions upon complex formation. The degree to which amino acids in the CcpA-HPr(Ser46P) interface contribute to cofactor binding was analyzed by in silico alanine scanning. Lys307, Arg303, Asp296, Val300, and Tyr295 of CcpA were identified as important amino acids for the CcpA-HPr(Ser46P) interaction. Three of these residues are directly involved in sensing the correct phosphorylation state at His15(HPr) and Ser46(HPr). A substitution of interface residues Val319, Val314, Ser316, Leu321 and Gln320 by alanine showed that these amino acids, which contact helix alpha2 of HPr(Ser46P), play a less prominent role for complex formation.  相似文献   

14.
The presence of glucose or other rapidly metabolizable carbon sources in the bacterial growth medium strongly represses Clostridium difficile toxin synthesis independently of strain origin. In Gram-positive bacteria, carbon catabolite repression (CCR) is generally regarded as a regulatory mechanism that responds to carbohydrate availability. In the C. difficile genome all elements involved in CCR are present. To elucidate in vivo the role of CCR in C. difficile toxin synthesis, we used the ClosTron gene knockout system to construct mutants of strain JIR8094 that were unable to produce the major components of the CCR signal transduction pathway: the phosphotransferase system (PTS) proteins (Enzyme I and HPr), the HPr kinase/phosphorylase (HprK/P) and the catabolite control protein A, CcpA. Inactivation of the ptsI, ptsH and ccpA genes resulted in derepression of toxin gene expression in the presence of glucose, whereas repression of toxin production was still observed in the hprK mutant, indicating that uptake of glucose is required for repression but that phosphorylation of HPr by HprK is not. C. difficile CcpA was found to bind to the regulatory regions of the tcdA and tcdB genes but not through a consensus cre site motif. Moreover in vivo and in vitro results confirmed that HPr-Ser45-P does not stimulate CcpA-dependent binding to DNA targets. However, fructose-1,6-biphosphate (FBP) alone did increase CcpA binding affinity in the absence of HPr-Ser45-P. These results showed that CcpA represses toxin expression in response to PTS sugar availability, thus linking carbon source utilization to virulence gene expression in C. difficile.  相似文献   

15.
16.
17.
Carbon catabolic repression (CR) by the catabolite control protein CcpA has been analyzed in Staphylococcus xylosus. Genes encoding components needed to utilize lactose, sucrose, and maltose were found to be repressed by CcpA. In addition, the ccpA gene is under negative autogenous control. Among several tested sugars, glucose caused strongest CcpA-dependent repression. Glucose can enter S. xylosus in nonphosphorylated form via the glucose uptake protein GlcU. Internal glucose is then phosphorylated by the glucose kinase GlkA. Alternatively, glucose can be transported and concomitantly phosphorylated by glucose-specific permease(s) of the phosphotransferase system (PTS). S. xylosus mutant strains deficient in GlcU or GlkA showed partial relief of glucose-specific, CcpA-dependent repression. Likewise, blocking PTS activity completely by inactivation of the gene encoding the general PTS protein enzyme I resulted in diminished glucose-mediated repression. Thus, both glucose entry routes contribute to glucose-specific CR in S. xylosus. The sugar transport activity of the PTS is not required to trigger glucose-specific repression. The phosphocarrier protein HPr however, is absolutely essential for CcpA activity. Inactivation of the HPr gene led to a complete loss of CR. Repression is also abolished upon inactivation of the HPr kinase gene or by replacing serine at position 46 of HPr by alanine. These results clearly show that HPr kinase provides the signal, seryl-phosphorylated HPr, to activate CcpA in S. xylosus.  相似文献   

18.
Three components involved in catabolite repression (CR) of gene expression in Bacillus have been identified. The cis-acting catabolite responsive element (CRE), which is present in many genes encoding carbon catabolic enzymes in various species of the Gram-positive bacteria, mediates CR of several genes in Bacillus subtilis, Bacillus megaterium, and Staphylococcus xylosus. CR of most genes regulated via CRE is also affected by the trans-acting factors CcpA and HPr. Similarities between CcpA and Lac and Gal repressors suggest binding of CcpA to CRE. HPr, a component of the phosphoenol pyruvate:sugar phosphotransferase system, undergoes regulatory phosphorylation at a serine residue by a fcuctose-1,6-diphosphate-activated kinase. A mutant of HPr, which is not phosphorylatable at this position because of an exchange of serine to alanine, lacks CR of several catabolic activities. This mutant phenotype is similar to the one exhibited by a ccpA mutant. Direct protein-protein interaction between CcpA and HPr(Ser-P) was recently demonstrated and constitutes a link between metabolic activity and CR.  相似文献   

19.
The carbon catabolite control protein A (CcpA) senses the physiological state of the cell by binding several effectors and responds with differential regulation of many genes in Bacilli. HPr-Ser46-P or Crh-Ser46-P interact with CcpA and stimulate binding to catabolite responsive elements. In addition, the glycolytic intermediates fructose 1,6-bisphosphate (FBP) and glucose 6-phosphate (Glc-6-P) stimulate HPr-Ser46-P but not Crh-Ser46-P binding to CcpA. The mechanisms by which coeffector binding to CcpA is linked to differential gene expression are unclear. To address this question we mutated residues participating in the interaction between HPr-Ser46-P or Crh-Ser46-P and CcpA and analyzed their effects on CcpA binding and stimulation of cre binding by surface plasmon resonance. The HPrH15A and CcpAD297A mutations do not affect complex formation but abolish FBP and Glc-6-P stimulation. Likewise, the CrhQ15H mutant becomes sensitive to these glycolytic intermediates. Hence, the contact of HPrHis-15 to Asp-297 in CcpA is a determinant for HPr specific FBP and Glc-6-P stimulation. The HPrR17A and -K mutants are both strongly impaired in stimulation of CcpA binding to cre, but only HPrR17A is defect in binding to CcpA indicating that these residues affect allostery of CcpA. Mutations of the residues of CcpA, which contact Arg-17 of HPr, exhibit differential effects on regulation of catabolic genes. Taken together, His-15 of HPr processes sensing information, while Arg-17 is involved in determining the genetic output.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号