首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the hemoglobin (Hb) superfamily are present in nerve tissue of several vertebrate and invertebrate species. In vertebrates they display hexacoordinate heme iron atoms and are typically expressed at low levels (microM). Their function is still a matter of debate. In invertebrates they have a hexa- or pentacoordinate heme iron, are mostly expressed at high levels (mM), and have been suggested to have a myoglobin-like function. The native Hb of the surf clam, Spisula solidissima, composed of 162 amino acids, does not show specific deviations from the globin templates. UV-visible and resonance Raman spectroscopy demonstrate a hexacoordinate heme iron. Based on the sequence analogy, the histidine E7 is proposed as a sixth ligand. Kinetic and equilibrium measurements show a moderate oxygen affinity (P(50) approximately 0.6 torr) and no cooperativity. The histidine binding affinity is 100-fold lower than in neuroglobin. Phylogenetic analysis demonstrates a clustering of the S. solidissima nerve Hb with mollusc Hbs and myoglobins, but not with the vertebrate neuroglobins. We conclude that invertebrate nerve Hbs expressed at high levels are, despite the hexacoordinate nature of their heme iron, not essentially different from other intracellular Hbs. They most likely fulfill a myoglobin-like function and enhance oxygen supply to the neurons.  相似文献   

2.
1. The occurrence of haemoglobin in invertebrate nerves is surveyed. Haemoglobin was observed in the nerves and ganglia of the marine nematode Amphiporus sp. and of the polychaet annelid Halosydna sp. 2. Haemoglobins from the nerve and ganglia of the polychaet annelid Aphrodite aculeata L. and from the nerve of the gastropod mollusc Aplysia californica have been partially purified. The haem in each case was identified as iron protoporphyrin IX. 3. The minimum molecular weight of Aphrodite nerve haemoglobin deduced from the haem content and amino acid analysis is 17090, in agreement with the molecular weight 15600+/-1000 determined by sedimentation equilibrium. 4. The molecular weight of Aplysia nerve haemoglobin was determined by sedimentation equilibrium to be 16400+/-1000. 5. The oxygen dissociation curves are hyperbolic. Half-saturation is achieved at 1.1mm. Hg for Aphrodite nerve haemoglobin and at 4.0mm. Hg for Aplysia nerve haemoglobin. The coefficients for partition between carbon monoxide and oxygen are: Aphrodite nerve haemoglobin, 167; Aplysia nerve haemoglobin, 116. 6. The ferrous haemoglobins combine with cyanide. 7. We conclude that the intracellular haemoglobins of muscle and nerve are similar.  相似文献   

3.
Fago A  Hundahl C  Malte H  Weber RE 《IUBMB life》2004,56(11-12):689-696
Neuroglobin and cytoglobin are two recently discovered vertebrate globins, which are expressed at low levels in neuronal tissues and in all tissues investigated so far, respectively. Based on their amino acid sequences, these globins appear to be phylogenetically ancient and to have mutated less during evolution in comparison to the other vertebrate globins, myoglobin and hemoglobin. As with some plant and bacterial globins, neuroglobin and cytoglobin hemes are hexacoordinate in the absence of external ligands, in that the heme iron atom coordinates both a proximal and a distal His residue. While the physiological role of hexacoordinate globins is still largely unclear, neuroglobin appears to participate in the cellular defence against hypoxia. We present the current knowledge on the functional properties of neuroglobin and cytoglobin, and describe a mathematical model to evaluate the role of mammalian retinal neuroglobin in supplying O2 supply to the mitochondria. As shown, the model argues against a significant such role for neuroglobin, that more likely plays a role to scavenge reactive oxygen and nitrogen species that are generated following brain hypoxia. The O2 binding properties of cytoglobin, which is upregulated upon hypoxia, are consistent with a role for this protein in O2-requiring reactions, such as those catalysed by hydroxylases.  相似文献   

4.
Globins have been found in glial cells and neurons of invertebrates and vertebrates. The first nerve globin has been recognized in the nerve cord of the polychaete annelid Aphrodite aculeata in 1872. In some invertebrates, the nerve globin reaches a millimolar concentration which is likely sufficient to sustain the aerobic metabolism and thus the excitability of the nervous system. In 2000, the first vertebrate nerve globin, named neuroglobin (Ngb), has been identified in neuronal tissues of mice and humans. In contrast to invertebrate nerve globins, the concentration of Ngb, the prototype of vertebrate nerve globins, is low (μM), reaching a maximum of 100 μM in retina cells. Therefore, Ngb appears unlikely to act primarily as an O? buffer and to facilitate O? diffusion to the mitochondria. Indeed, Ngb has been hypothesized to catalyze the formation/decomposition of reactive nitrogen and/or oxygen species and to be part of intracellular signaling pathways enhancing cell survival. Here, we report that neuronal Ngb levels are strongly induced by the steroid hormone 17β-estradiol. Furthermore, Ngb participates to mechanisms involved in 17β-estradiol-induced protective effects against H?O? -induced neurotoxicity.  相似文献   

5.
O2 binding to human haemoglobin F0 was studied at high haem concentrations (3 mM) in the temperature range 15-35 degrees C and in the pH range 6.8-8.7 at 25 degrees C. Comparison with O2 binding to human adult haemoglobin A0 under identical solution conditions reveals striking similarities in the Bohr effect and the enthalpy of oxygenation between the two haemoglobins.  相似文献   

6.
Only recently it was discovered that haemoglobin (Hb) belongs to the standard gene repertoire of insects, although their tracheal system is used for respiration. A classical oxygen-carrying function of Hb is only obvious for hexapods living in hypoxic environments. In other insect species, including the common fruit fly Drosophila melanogaster, the physiological role of Hb is yet unclear. Here, we study recombinant haemoglobin from the European honeybee Apis mellifera (Ame) and the malaria mosquito Anopheles gambiae (Aga). Spectroscopic evidence shows that both proteins can be classified as hexacoordinate Hbs with a strong affinity for the distal histidine. AgaHb1 is proposed to play a role in oxygen transport or sensing based on its multimeric state, slow autoxidation, and small but significant amount of five-coordinated haem in the deoxy ferrous form. AmeHb appears to behave more like vertebrate neuroglobin with a complex function given its diversified distribution in the genome.  相似文献   

7.
Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen.   总被引:17,自引:0,他引:17  
Neuroglobin is a newly discovered mammalian hemoglobin that is expressed predominately in the brain (Burmester, T., Welch, B., Reinhardt, S., and Hankeln, T. (2000) Nature 407, 520-523). Neuroglobin has less than 25% identity with other vertebrate globins and shares less than 30% identity with the annelid nerve myoglobin it most closely resembles among known hemoglobins. Spectroscopic and kinetic experiments with the recombinant protein indicate that human neuroglobin is the first example of a hexacoordinate hemoglobin in vertebrates and is similar to plant and bacterial hexacoordinate hemoglobins in several respects. The ramifications of hexacoordination and potential physiological roles are explored in light of the determination of an O(2) affinity that precludes neuroglobin from functioning in traditional O(2) storage and transport.  相似文献   

8.
The structural adaptability of the globin fold has been highlighted by the recent discovery of the 2-on-2 haemoglobins, of neuroglobin and cytoglobin. Protoglobin from Methanosarcina acetivorans C2A-a strictly anaerobic methanogenic Archaea-is, to the best of our knowledge, the latest entry adding new variability and functional complexity to the haemoglobin (Hb) superfamily. Here, we report the 1.3 A crystal structure of oxygenated M. acetivorans protoglobin, together with the first insight into its ligand-binding properties. We show that, contrary to all known globins, protoglobin-specific loops and an amino-terminal extension completely bury the haem within the protein matrix. Access of O(2), CO and NO to the haem is granted by the protoglobin-specific apolar tunnels reaching the haem distal site from locations at the B/G and B/E helix interfaces. Functionally, M. acetivorans dimeric protoglobin shows a selectivity ratio for O(2)/CO binding to the haem that favours O(2) ligation and anticooperativity in ligand binding. Both properties are exceptional within the Hb superfamily.  相似文献   

9.
Pagothenia borchgrevinki , has a higher haemoglobin concentration than other Antarctic notothenioids and the high oxygen capacity may correlate with the relatively active mode of life of this fish. The fish has five haemoglobins (Hb C, Hb 0, Hb 1, Hb 2 and Hb 3) with Hb 1 accounting for 70–80% of the total, and Hb C being present in trace amounts. Hb 1 and Hb 2 are functionally similar in terms of Bohr and Root effects. Hb 3 has a weaker Bohr effect than Hb 1 and Hb 2, and the Root effect is similar to that of Hb 1. Hb 0 has a strong Bohr effect and the Root effect is enhanced to a larger extent by the physiological effectors chlorides and phosphates than that of the other components with the exception of Hb C. The heats of oxygenation are lower than those of temperate fish haemoglobins. Temperature variations may have a different effect on the functional properties of each haemoglobin, and chloride and phosphates may play an important role in the conformational change between the oxy and deoxy structures. The complete amino acid sequences of Hb 1 and Hb 0, as well as partial N-terminal or internal sequences of the other haemoglobins, have been established. The high multiplicity of functionally distinct haemoglobins indicates that P. borchgrevinki , has a specialized haemoglobin system.  相似文献   

10.
A molecular-clock date for the origin of the animal phyla   总被引:9,自引:0,他引:9  
Although the reliability of the molecular clock for determining divergence times that are not visible in the fossil record has been questioned, the amino-acid sequence differences in the α and β haemoglobins of a variety of living vertebrates do not support this view. While the molecular clock is clearly probabilistic rather than metronomic, it can be shown that the α and β haemoglobins have been evolving at a statistically equal rate since they first appeared some 450–500 million years ago. If this rate has always been constant for all globins, then the percentage sequence differences between several invertebrate and some vertebrate globins can be used to indicate that the initial radiation of the animal phyla occurred at least 900–1000 million years ago. ?Molecular evolution, Metazoa, haemoglobin.  相似文献   

11.
Neuroglobin and cytoglobin are two recent additions to the family of heme-containing respiratory proteins of man and other vertebrates. Here, we review the present state of knowledge of the structures, ligand binding kinetics, evolution and expression patterns of these two proteins. These data provide a first glimpse into the possible physiological roles of these globins in the animal's metabolism. Both, neuroglobin and cytoglobin are structurally similar to myoglobin, although they contain distinct cavities that may be instrumental in ligand binding. Kinetic and structural studies show that neuroglobin and cytoglobin belong to the class of hexa-coordinated globins with a biphasic ligand-binding kinetics. Nevertheless, their oxygen affinities resemble that of myoglobin. While neuroglobin is evolutionarily related to the invertebrate nerve-globins, cytoglobin shares a more recent common ancestry with myoglobin. Neuroglobin expression is confined mainly to brain and a few other tissues, with the highest expression observed in the retina. Present evidence points to an important role of neuroglobin in neuronal oxygen homeostasis and hypoxia protection, though other functions are still conceivable. Cytoglobin is predominantly expressed in fibroblasts and related cell types, but also in distinct nerve cell populations. Much less is known about its function, although in fibroblasts it might be involved in collagen synthesis.  相似文献   

12.
The effect of temperature and hypoxic acclimation on the haemoglobin system and intraerythrocytic organic phosphate concentrations in the South African mudfish, Labeo capensis, have been investigated. Exposure to hypoxia or increased temperature raised haemoglobin concentration and decreased NTP/Hb ratio. Temperature acclimation did not effect the oxygenation characteristics of the haemolysate or haemoglobin multiplicity, as evident from isoelectric focussing experiments that showed one cathodic (Hb I) and three anodic haemoglobins (Hb II, III and IV). Oxygen equilibria of the isolated components showed a smaller Bohr effect and lower temperature and organic phosphate sensitivities in the cathodic than in the anodic haemoglobins. Unlike the trout and eel haemoglobin systems, both the anodic and cathodic haemoglobins from L. capensis exhibited sensitivity to organic phosphates but the effect was smaller in the latter. The results indicate that oxygen transport in mudfish blood is supported by variations in the red cell organic phosphate\haemoglobin ratio and the functional differentiation between anodic and cathodic haemoglobins.  相似文献   

13.
We have measured the contribution of the alkaline Bohr effect of the C-terminal histidine residues of the beta-chains of haemoglobin A by comparing haemoglobin A with haemoglobin Cowtown in which those histidine residues are replaced by leucine. Oxygenation of a stripped 2.5 mM (haem) solution of haemoglobin A yielded 0.19 H+/haem, while oxygenation of a similar solution of haemoglobin Cowtown produced no change of pH. Oxygen equilibria measured at 60 microM-haem in 0.1 M-Hepes buffer gave an alkaline Bohr effect of -0.21 H+/haem for haemoglobin A and only -0.01 H+/haem for haemoglobin Cowtown, even though its Hill's coefficient was greater than 2 throughout the pH range studied. These results prove that the chloride-independent part of the alkaline Bohr effect is due to the C-terminal histidine residues of the beta-chains. Oxygen equilibria measured in 0.095 M-bis-Tris buffers with minimal chloride or with 0.1 M-chloride showed the contribution of those histidine residues to the alkaline Bohr effect to be about 0.2 H+/haem, independent of chloride concentration. Determination of the individual Adair coefficients in the three different buffers indicated that pH and chloride tend to have their greatest effects at the second or third steps of oxygenation when the change of quaternary structure is most likely to occur; between pH 7 and 9, the fourth Adair coefficient is only very slightly affected by pH and not significantly by chloride.  相似文献   

14.
Many teleost fishes have haemoglobins which possess a Root effect, a large Haldane effect and a low buffer capacity. This combination of characteristics influences the interaction between movements of oxygen and carbon dioxide in the red cell, in the respiratory epithelium, and in the tissues. The presence of the Root effect may limit oxygen uptake at the gills due to an accumulation of Bohr protons released upon oxygenation. However, the Root effect is probably important in maintaining or elevating blood PO2 during muscle capillary transit, enhancing oxygen delivery to the tissues.Bohr protons are reversibly bound to haemoglobin. The release of Bohr protons during oxygenation facilitates bicarbonate dehydration at the gills, while Bohr proton binding facilitates CO2 hydration at the tissues. In some teleost fishes, most of the Bohr protons are released and bound to haemoglobin, between 50 and 100% of haemoglobin-oxygen saturation (27). This trait is probably significant in maximizing oxygen uptake at the gills and in conserving body CO2 stores during exposure to hypoxia and exercise, when the lower reaches of the haemoglobin-oxygen equilibrium curve are used.  相似文献   

15.
Neuroglobin has been identified as a respiratory protein that is primarily expressed in the mammalian nervous system. Here we present the first detailed analysis of neuroglobin from a non-mammalian vertebrate, the zebrafish Danio rerio. The zebrafish neuroglobin gene reveals a mammalian-type exon-intron pattern in the coding region (B12.2, E11.0, and G7.0), plus an additional 5'-non-coding exon. Similar to the mammalian neuroglobin, the zebrafish protein displays a hexacoordinate deoxy-binding scheme. Flash photolysis kinetics show the competitive binding on the millisecond timescale of external ligands and the distal histidine, resulting in an oxygen affinity of 1 torr. Western blotting, immune staining, and mRNA in situ hybridization demonstrate neuroglobin expression in the fish central nervous system and the retina but also in the gills. Neurons containing neuroglobin have a widespread distribution in the brain but are also present in the olfactory system. In the fish retina, neuroglobin is mainly present in the inner segments of the photoreceptor cells. In the gills, the chloride cells were identified to express neuroglobin. Neuroglobin appears to be associated with mitochondria-rich cell types and thus oxygen consumption rates, suggesting a myoglobin-like function of this protein in facilitated oxygen diffusion.  相似文献   

16.
The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called "pentacoordinate" hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called "hexacoordinate hemoglobins", which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal.  相似文献   

17.
The expression of nerve hemoglobins in invertebrates is a well-established fact, but this occurrence is uncommon. In the species where nerve globins occur, they probably function as an oxygen store for sustaining activity of the nerves during anoxic conditions. Although invertebrate nerve globins are functionally similar with respect to O2 affinity, they are by no means uniform in structure and can differ in size, cellular localization and heme-coordination. The best-studied nerve globin is the mini-globin of Cerebratulus lacteus, which belongs to a class of globins containing the polar TyrB10/GlnE7 pair in the distal pocket. The amide and phenol side chains normally cause low rates of O2 dissociation and ultra-high O2 affinity by forming strong hydrogen bonds with bound ligands. Cerebratulus hemoglobin, however, has a moderate O2 affinity, due to the presence of a third polar amino-acid in its active site, ThrE11, which inhibits hydrogen bonding to bound oxygen by the B10 tyrosine side chain.  相似文献   

18.
The dioxygen affinity of Dicrocoelium dendriticum haemoglobin was determined as a function of pH with a thin-layer diffusion technique. From the oxygen dissociation and association curves Hill coefficients h equal 1 were obtained throughout. Ultracentrifugation studies prove this haemoglobin to be monomeric irrespective of pH and ligation state. Thus, Dicrocoelium haemoglobin is a non-cooperative monomer. It has the highest O2 affinity so far known for any monomeric haemoglobin: its half-saturation pressure, p50 value, ranges at 25 degrees C from 0.016 mm Hg to 0.15 mm Hg (2.13-20.0 Pa) dependent on pH. Dicrocoelium haemoglobin shows an acid Bohr effect only and as such it constitutes a new class of haemoglobins. Its log p50 versus pH plot (Bohr effect curve) is characterized by a large amplitude, delta log p50 = 0.96, and an inflection point (Bohr effect pK) at pH 5.0. A model for the acid Bohr effect of D. dendriticum haemoglobin is proposed. By generalization, both the alkaline and the acid Bohr effect in various monomeric haemoglobins may arise from a single Bohr group complex (salt bridge).  相似文献   

19.
The physiological role of neuroglobin and cytoglobin, two vertebrate globins discovered in the last 5 years, is not yet clearly understood. In this work, we review the structural information on these globins and its implication on the possible protein function, obtained by electron paramagnetic resonance and resonance Raman spectroscopy. All studies reveal a high flexibility in the heme-pocket region of neuroglobin. Together with the observation that the distal ligand of the heme iron is the endogenous E7-histidine in both the ferric and ferrous form of neuroglobin and cytoglobin, the flexibility of the heme environment in neuroglobin will play a crucial role in the globins' ability to bind and stabilize exogenous ligands.  相似文献   

20.
The oxygen-binding characteristics of the three extracellular haemoglobins of brine shrimp (Artemia salina) were studied in vitro by using highly purified preparations. Haemoglobin I is induced last in the development of brine shrimps when functional gills are formed. It has the lowest oxygen affinity (p50 5.34mmHg), an intermediate Bohr effect (ø −0.09 at 20°C) above pH8 and a temperature-sensitivity (ΔH −44.8 to −45.6kJ/mol at pH8–9) comparable with those observed with other invertebrate haemoglobins [Weber & Heidemann (1977) Comp. Biochem. Physiol. A 57, 151–155]. Haemoglobin II, which is the first to be induced, soon after hatching of nauplius larvae, persists generally throughout the whole adult life. It has an intermediate oxygen affinity (p50 3.7mmHg), the highest Bohr effect (ø −0.21 at 20°C) above pH8 and a similar temperature-sensitivity (ΔH −46.0 to −54.8kJ/mol at pH8–9) as haemoglobin I. However, haemoglobin III, which is induced second several hours after the induction of haemoglobin II but disappearing from the haemolymph in the middle of adult life, has the highest oxygen affinity (p50 1.8mmHg), the lowest Bohr effect (ø −0.03 at 20°C) above pH8.5 and a high resistance against temperature variation between 10 and 25°C at pH8.5–9 (ΔH −22.6 to −23.0kJ/mol). At pH7.5–8, haemoglobin III exhibits a similar temperature-sensitivity under 30°C as do other haemoglobins. All three haemoglobins have a rather low co-operativity, with Hill coefficients (h 1.6–1.9 at pH8.5), which are dependent on both pH and temperature. The highest co-operativity was observed at 20°C and pH9 for haemoglobins I and II, whereas it was at 27°C and pH8.5 for haemoglobin III. Thus the oxygen-binding behaviour of haemoglobin III in vitro is significantly different from those of haemoglobins I and II and indicates possibly its specific physiological role in vivo in the adaptive process in the natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号