首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During membrane fusion, the influenza A virus hemagglutinin (HA) adopts an extended helical structure that contains the viral transmembrane and fusion peptide domains at the same end of the molecule. The peptide segments that link the end of this rod-like structure to the membrane-associating domains are approximately 10 amino acids in each case, and their structure at the pH of fusion is currently unknown. Here, we examine mutant HAs and influenza viruses containing such HAs to determine whether these peptide linkers are subject to specific length requirements for the proper folding of native HA and for membrane fusion function. Using pairwise deletions and insertions, we show that the region flanking the fusion peptide appears to be important for the folding of the native HA structure but that mutant proteins with small insertions can be expressed on the cell surface and are functional for membrane fusion. HA mutants with deletions of up to 10 residues and insertions of as many as 12 amino acids were generated for the peptide linker to the viral transmembrane domain, and all folded properly and were expressed on the cell surface. For these mutants, it was possible to designate length restrictions for efficient membrane fusion, as functional activity was observed only for mutants containing linkers with insertions or deletions of eight residues or less. The linker peptide mutants are discussed with respect to requirements for the folding of native HAs and length restrictions for membrane fusion activity.  相似文献   

2.
A prevailing model for virus membrane fusion proteins has been that the hydrophobic fusion peptide is hidden in the prefusion conformation, becomes exposed once the fusion reaction is triggered, and then either inserts into target membranes or is rapidly inactivated. This model is in general agreement with the structure and mechanism of class I fusion proteins, such as the influenza virus hemagglutinin. We here describe studies of the class II fusion protein E1 from the alphavirus Semliki Forest virus (SFV). SFV fusion is triggered by low pH, which releases E1 from its heterodimeric interaction with the E2 protein and induces the formation of a stable E1 homotrimer. The exposure and target membrane interaction of the E1 fusion peptide (residues 83 to 100) were followed using a monoclonal antibody (MAb E1f) mapping to E1 residues 85 to 95. In agreement with the known structure of SFV and other alphaviruses, the fusion peptide was shielded in native SFV particles and exposed when E1-E2 dimer dissociation was triggered by acidic pH. In contrast, the fusion peptide on purified E1 ectodomains (E1(*)) was fully accessible at neutral pH. Functional assays showed that MAb E1f binding at neutral pH prevented subsequent low-pH-triggered E1(*) interaction with target membranes and trimerization. E1(*) was not inactivated by low pH when treated either in the absence of target membranes or in the presence of fusion-inactive cholesterol-deficient liposomes. Thus, the membrane insertion of the E1 fusion peptide is regulated by additional low-pH-dependent steps after exposure, perhaps involving an E1-cholesterol interaction.  相似文献   

3.
Rabies virus is a member of the rhabdovirus family. It enters cells by a process of receptor mediated endocytosis. Following this step, the viral envelope fuses with the endosomal membrane to allow release of the viral nucleocapsid into the cytoplasm. Fusion is induced by the low pH of the endosomal compartment and is mediated by the single viral glycoprotein G, a homotrimeric integral membrane protein. Rabies virus fusion properties are related to different conformational states of G. By different biochemical and biophysical approaches, it has been demonstrated that G can assume at least three different states: the native (N) state detected at the viral surface above pH 7, the activated (A) hydrophobic state which interacts with the target membrane as a first step of the fusion process, and the fusion inactive (I) conformation. Differently from other fusogenic viruses for which low pH-induced conformational changes are irreversible, there is a pH dependent equilibrium between these states, the equilibrium being shifted toward the I-state at low pH. The objective of this review is to detail recent findings on rhabdovirus-induced membrane fusion and to underline the differences that exist between this viral family and influenza virus which is the best known fusogenic virus. These differences have to be taken into consideration if one wants to have a global understanding of virus-induced membrane fusion.  相似文献   

4.
A novel fluorescence assay [Hoekstra, D., De Boer, T., Klappe, K., & Wilschut, J. (1984) Biochemistry 23, 5675-5681] has been used to characterize the fusogenic properties of Sendai virus, using erythrocyte ghosts and liposomes as target membranes. This assay involves the incorporation of the "fusion-reporting" probe in the viral membrane, allowing continuous monitoring of the fusion process in a very sensitive manner. Fusion was inhibited upon pretreatment of Sendai virus with trypsin. Low concentrations of the reducing agent dithiothreitol (1 mM) almost completely abolished viral fusion activity, whereas virus binding was reduced by ca. 50%, indicating that the fusogenic properties of Sendai virus are strongly dependent on the integrity of intramolecular disulfide bonds in the fusion (F) protein. Pretreatment of erythrocyte ghosts with nonlabeled Sendai virus inhibited subsequent fusion of fluorophore-labeled virus irrespective of the removal of nonbound virus, thus suggesting that the initial binding of the virus to the target membrane is largely irreversible. As a function of pH, Sendai virus displayed optimal fusion activity around pH 7.5-8.0. Preincubation of the virus at suboptimal pH values resulted in an irreversible diminishment of its fusion capacity. Since virus binding was not affected by the pH, the results are consistent with a pH-induced irreversible conformational change in the molecular structure of the F protein, occurring under mild acidic and alkaline conditions. In contrast to virus binding, fusion appeared to be strongly dependent on temperature, increasing ca. 25-fold when the temperature was raised from 23 to 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Viral fusion protein trimers can play a critical role in limiting lipids in membrane fusion. Because the trimeric oligomer of many viral fusion proteins is often stabilized by hydrophobic 4-3 heptad repeats, higher-order oligomers might be stabilized by similar sequences. There is a hydrophobic 4-3 heptad repeat contiguous to a putative oligomerization domain of Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64. We performed mutagenesis and peptide inhibition studies to determine if this sequence might play a role in catalysis of membrane fusion. First, leucine-to-alanine mutants within and flanking the amino terminus of the hydrophobic 4-3 heptad repeat motif that oligomerize into trimers and traffic to insect Sf9 cell surfaces were identified. These mutants retained their wild-type conformation at neutral pH and changed conformation in acidic conditions, as judged by the reactivity of a conformationally sensitive mAb. These mutants, however, were defective for membrane fusion. Second, a peptide encoding the portion flanking the GP64 hydrophobic 4-3 heptad repeat was synthesized. Adding peptide led to inhibition of membrane fusion, which occurred only when the peptide was present during low pH application. The presence of peptide during low pH application did not prevent low pH-induced conformational changes, as determined by the loss of a conformationally sensitive epitope. In control experiments, a peptide of identical composition but different sequence, or a peptide encoding a portion of the Ebola GP heptad motif, had no effect on GP64-mediated fusion. Furthermore, when the hemagglutinin (X31 strain) fusion protein of influenza was functionally expressed in Sf9 cells, no effect on hemagglutinin-mediated fusion was observed, suggesting that the peptide does not exert nonspecific effects on other fusion proteins or cell membranes. Collectively, these studies suggest that the specific peptide sequences of GP64 that are adjacent to and include portions of the hydrophobic 4-3 heptad repeat play a dynamic role in membrane fusion at a stage that is downstream of the initiation of protein conformational changes but upstream of lipid mixing.  相似文献   

6.
Semliki Forest virus (SFV) is an enveloped alphavirus whose membrane fusion is triggered by low pH and promoted by cholesterol and sphingolipid in the target membrane. Fusion is mediated by E1, a viral membrane protein containing the putative fusion peptide. Virus mutant studies indicate that SFV's cholesterol dependence is controlled by regions of E1 outside of the fusion peptide. Both E1 and E1*, a soluble ectodomain form of E1, interact with membranes in a reaction dependent on low pH, cholesterol, and sphingolipid and form highly stable homotrimers. Here we have used detergent extraction and gradient floatation experiments to demonstrate that E1* associated selectively with detergent-resistant membrane domains (DRMs or rafts). In contrast, reconstituted full-length E1 protein or influenza virus fusion peptide was not associated with DRMs. Methyl beta-cyclodextrin quantitatively extracted both cholesterol and E1* from membranes in the absence of detergent, suggesting a strong association of E1* with sterol. Monoclonal antibody studies demonstrated that raft association was mediated by the proposed E1 fusion peptide. Thus, although other regions of E1 are implicated in the control of virus cholesterol dependence, once the SFV fusion peptide inserts in the target membrane it has a high affinity for membrane domains enriched in cholesterol and sphingolipid.  相似文献   

7.
We have studied a group of fusion peptides of influenza hemagglutinin in which the N-terminal amino acid, Gly (found in the wild-type peptide), has been systematically substituted with Ala, Ser, Val, or Glu. The activity of the intact hemagglutinin protein with these same substitutions has already been reported. As a measure of the extent of modulation of intrinsic membrane curvature by these peptides, we determined their effects on the polymorphic phase transition of dipalmitoleoylphosphatidylethanolamine. The wild-type peptide is the only one that, at pH 5, can substantially decrease the temperature of this transition. This is also the only form in which the intact protein promotes contents mixing in cells. The Ala and Ser mutant hemagglutinins exhibit a hemifusion phenotype, and their fusion peptides have little effect on lipid polymorphism at low pH. The two mutant proteins that are completely fusion inactive are the Val and Glu mutant hemagglutinins. The fusion peptides from these forms significantly increase the polymorphic phase transition temperature at low pH. We find that the effect of the fusion peptides on membrane curvature, as monitored by a shift in the temperature of this polymorphic phase transition, correlates better with the fusogenic activities of the corresponding protein than do measurements of the isotropic (31)P NMR signals or the ability to induce the fusion of liposomes. The inactivity of the hemagglutinin protein with the hydrophobic Val mutation can be explained by the change in the angle of membrane insertion of the helical fusion peptide as measured by polarized FTIR. Thus, the nature of the interactions of the fusion peptides with membranes can, in large part, explain the differences in the fusogenic activity of the intact protein.  相似文献   

8.
Fusion is a crucial event in the infection of animal cells by enveloped viruses (e.g., HIV or influenza). Viral fusion is mediated by glycoproteins, spanning the viral envelope, which attach to a membrane surface and induce fusion of the viral envelope to the cellular membrane. Influenza fusion protein (hemagglutinin) contains an amino-terminal segment critical to fusion, referred to as the fusion peptide. We show here that the native fusion peptide (wt-20) of hemagglutinin destabilizes membranes formed of 99% 1 -stearoyl-2-oleoylphosphatidylcholine (SOPC). The first step in destabilization is rapid insertion of the peptide into the membrane, in which membrane area increases by as much as 11% in just seconds. We visualized and quantified the area expansion by using optical video microscopy combined with micropipette aspiration. This rapid membrane area expansion is followed by the formation of membrane defects in the size range of 0.5 nm, and results in membrane rupture. Both the rate of area increase and maximum area increase are significantly higher at a pH near 5.0 compared to pH 7.0. These results suggest that enhanced membrane insertion of wt-20 and accompanying area expansion at pH 5.0 are responsible for the relatively greater lytic activity at this pH. We show that a deletion of the N-terminal glycine of wt-20 results in a lack of area expansion or membrane perturbation at pH 5.0.  相似文献   

9.
Membrane fusion is an essential step of the internalization process of the enveloped animal viruses. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in VSV G protein, comprising the residues 145 to 164, directly involved in membrane interaction and fusion. Unlike fusion peptides from other viruses, this sequence is very hydrophilic, containing six charged residues, but it was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Using a carboxyl-modifying agent, dicyclohexylcarbodiimide (DCCD), and several synthetic mutant peptides, we demonstrated that the negative charges of peptide acidic residues, especially Asp153 and Glu158, participate in the formation of a hydrophobic domain at pH 6.0, which is necessary to the peptide-induced membrane fusion. The formation of the hydrophobic region and the membrane fusion itself were dependent on peptide concentration in a higher than linear fashion, suggesting the involvement of peptide oligomerization. His148 was also necessary to hydrophobicity and fusion, suggesting that peptide oligomerization occurs through intermolecular electrostatic interactions between the positively-charged His and a negatively-charged acidic residue of two peptide molecules. Oligomerization of hydrophilic peptides creates a hydrophobic region that is essential for the interaction with the membrane that results in fusion.  相似文献   

10.
The 20 N-terminal residues of the HA2 subunit of influenza hemagglutinin (HA), known as the fusion peptide, play a crucial role in membrane fusion. Molecular dynamics simulations with implicit solvation are employed here to study the structure and orientation of the fusion peptide in membranes. As a monomer the α-helical peptide adopts a shallow, slightly tilted orientation along the lipid tail-head group interface. The average angle of the peptide with respect to membrane plane is 12.4 °. We find that the kinked structure proposed on the basis of NMR data is not stable in our model because of the high energy cost related to the membrane insertion of polar groups. Because hemagglutinin-mediated membrane fusion is promoted by low pH, we examined the effect of protonation of the Glu and Asp residues. The configurations of the protonated peptides were slightly deeper in the membrane but at similar angles. Finally, because HA is a trimer, we modeled helical fusion peptide trimers. We find that oligomerization affects the insertion depth of the peptide and its orientation with respect to the membrane: a trimer exhibits equally favorable configurations in which some or all of the helices in the bundle insert obliquely deep into the membrane.  相似文献   

11.
The 20 N-terminal residues of the HA2 subunit of influenza hemagglutinin (HA), known as the fusion peptide, play a crucial role in membrane fusion. Molecular dynamics simulations with implicit solvation are employed here to study the structure and orientation of the fusion peptide in membranes. As a monomer the alpha-helical peptide adopts a shallow, slightly tilted orientation along the lipid tail-head group interface. The average angle of the peptide with respect to membrane plane is 12.4 degrees . We find that the kinked structure proposed on the basis of NMR data is not stable in our model because of the high energy cost related to the membrane insertion of polar groups. Because hemagglutinin-mediated membrane fusion is promoted by low pH, we examined the effect of protonation of the Glu and Asp residues. The configurations of the protonated peptides were slightly deeper in the membrane but at similar angles. Finally, because HA is a trimer, we modeled helical fusion peptide trimers. We find that oligomerization affects the insertion depth of the peptide and its orientation with respect to the membrane: a trimer exhibits equally favorable configurations in which some or all of the helices in the bundle insert obliquely deep into the membrane.  相似文献   

12.
We have recently designed a host-guest peptide system that allows us to quantitatively measure the energetics of interaction of viral fusion peptides with lipid bilayers. Here, we show that fusion peptides of influenza hemagglutinin reversibly associate with one another at membrane surfaces above critical surface concentrations, which range from one to five peptides per 1000 lipids in the systems that we investigated. It is further demonstrated by using circular dichroism and Fourier transform infrared spectroscopy that monomeric peptides insert into the bilayers in a predominantly alpha-helical conformation, whereas self-associated fusion peptides adopt predominantly antiparallel beta-sheet structures at the membrane surface. The two forms are readily interconvertible and the equilibrium between them is determined by the pH and ionic strength of the surrounding solution. Lowering the pH favors the monomeric alpha-helical conformation, whereas increasing the ionic strength shifts the equilibrium towards the membrane-associated beta-aggregates. The binding data are interpreted in terms of a cooperative binding model that yields free energies of insertion and free energies of self-association for each of the peptides studied at pH 7.4 and pH 5. At pH 5 and 35 mM ionic strength, the insertion energy of the 20 residue influenza hemagglutinin fusion peptide is -7.2 kcal/mol and the self-association energy is -1.9 kcal/mol. We propose that self-association of fusion peptides could be a major driving force for recruiting a small number of hemagglutinin trimers into a fusion site.  相似文献   

13.
Cells expressing the influenza hemagglutinin protein were fused to planar lipid bilayers containing the viral receptor GD1a at pH 5.0. An amphiphile known to alter membrane properties is lipophosphoglycan (LPG). This glycoconjugate was added from aqueous solution to either the cis or the trans monolayer to examine its effects on the fusion process. LPG markedly inhibited the formation of fusion pores when present in the cis monolayer but LPG in the trans monolayer had no effect on the parameters of pore formation or on the properties of the pores. The N-terminal segment of the HA2 subunit of the influenza hemagglutinin protein is important for membrane fusion. The effect of LPG on the conformation and membrane insertion of a synthetic 20-amino-acid peptide, corresponding to the influenza fusion peptide, was examined at pH 5.0 by attenuated total reflection Fourier transform infrared spectroscopy and by the fluorescence properties of the Trp residues of this peptide. It was found that cis LPG did not prevent insertion of the peptide into the membrane but it did alter the conformation of the membrane-inserted peptide from alpha-helix to beta-structure. The beta-structure was oriented along the bilayer normal. The effect of cis LPG on the conformation of the fusion peptide probably contributes to the observed inhibition of pore formation and lipid mixing. In contrast, trans LPG has no effect on the conformation or angle of membrane insertion of the peptide, nor does it affect pore formation by HA-expressing cells. The ineffectiveness of trans LPG, despite it having strong positive curvature-promoting properties, may be a consequence of the size of this amphiphile being too large to enter a fusion pore.  相似文献   

14.
The refolding of the prototypic fusogenic protein hemagglutinin (HA) at the pH of fusion is considered to be a concerted and irreversible discharge of a loaded spring, with no distinct intermediates between the initial and final conformations. Here, we show that HA refolding involves reversible conformations with a lifetime of minutes. After reneutralization, low pH-activated HA returns from the conformations wherein both the fusion peptide and the kinked loop of the HA2 subunit are exposed, but the HA1 subunits have not yet dissociated, to a structure indistinguishable from the initial one in functional, biochemical and immunological characteristics. The rate of the transition from reversible conformations to irreversible refolding depends on the pH and on the presence of target membrane. Importantly, recovery of the initial conformation is blocked by the interactions between adjacent HA trimers. The existence of the identified reversible stage of refolding can be crucial for allowing multiple copies of HA to synchronize their release of conformational energy, as required for fusion.  相似文献   

15.
Influenza virus hemagglutinin (HA)-mediated membrane fusion involves insertion into target membranes of a stretch of amino acids located at the N-terminus of the HA(2) subunit of HA at low pH. The pK(a) of the alpha-amino group of (1)Gly of the fusion peptide was measured using (15)N NMR. The pK(a) of this group was found to be 8.69 in the presence of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine). The high value of this pK(a) is indicative of stabilization of the protonated form of the amine group through noncovalent interactions. The shift reagent Pr(3+) had large effects on the (15)N resonance from the alpha-amino group of Gly(1) of the fusion peptide in DOPC vesicles, indicating that the terminal amino group was exposed to the bulk solvent, even at low pH. Furthermore, electron paramagnetic resonance studies on the fusion peptide region of spin-labeled derivatives of a larger HA construct are consistent with the N-terminus of this peptide being at the depth of the phosphate headgroups. We conclude that at both neutral and acidic pH, the N-terminal of the fusion peptide is close to the aqueous phase and is protonated. Thus neither a change in the state of ionization nor a significant increase in membrane insertion of this group is associated with increased fusogenicity at low pH.  相似文献   

16.
Membrane fusion is an essential step of the internalization process of the enveloped animal viruses. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in VSV G protein, comprising the residues 145 to 164, directly involved in membrane interaction and fusion. Unlike fusion peptides from other viruses, this sequence is very hydrophilic, containing six charged residues, but it was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Using a carboxyl-modifying agent, dicyclohexylcarbodiimide (DCCD), and several synthetic mutant peptides, we demonstrated that the negative charges of peptide acidic residues, especially Asp153 and Glu158, participate in the formation of a hydrophobic domain at pH 6.0, which is necessary to the peptide-induced membrane fusion. The formation of the hydrophobic region and the membrane fusion itself were dependent on peptide concentration in a higher than linear fashion, suggesting the involvement of peptide oligomerization. His148 was also necessary to hydrophobicity and fusion, suggesting that peptide oligomerization occurs through intermolecular electrostatic interactions between the positively-charged His and a negatively-charged acidic residue of two peptide molecules. Oligomerization of hydrophilic peptides creates a hydrophobic region that is essential for the interaction with the membrane that results in fusion.  相似文献   

17.
A detailed molecular dynamics study of the haemagglutinin fusion peptide (N-terminal 20 residues of the HA2 subunits) in a model bilayer has yielded useful information about the molecular interactions leading to insertion into the lipids. Simulations were performed on the native sequence, as well as a number of mutant sequences, which are either fusogenic or nonfusogenic. For the native sequence and fusogenic mutants, the N-terminal 11 residues of the fusion peptides are helical and insert with a tilt angle of approximately 30 degrees with respect to the membrane normal, in very good agreement with experimental data. The tilted insertion of the native sequence peptide leads to membrane bilayer thinning and the calculated order parameters show larger disorder of the alkyl chains. These results indicate that the lipid packing is perturbed by the fusion peptide and could be used to explain membrane fusion. For the nonfusogenic sequences investigated, it was found that most of them equilibrate parallel to the interface plane and do not adopt a tilted conformation. The presence of a charged residue at the beginning of the sequence (G1E mutant) resulted in a more difficult case, and the outcomes do not fall straightforwardly into the general picture. Sequence searches have revealed similarities of the fusion peptide of influenza haemagglutinin with peptide sequences such as segments of porin, amyloid alpha eta peptide, and a peptide from the prion sequence. These results confirm that the sequence can adopt different folds in different environments. The plasticity and the conformational dependence on the local environment could be used to better understand the function of fusion peptides.  相似文献   

18.
Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes   总被引:2,自引:0,他引:2  
Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, and fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing of internal aqueous contents of liposomes, utilizing the quenching of aminonaphthalene-3,6,8-trisulfonic acid (ANTS) by N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated in two separate populations of vesicles, (ii) a resonance energy transfer assay for the dilution of fluorescent phospholipids from labeled to unlabeled liposomes, (iii) irreversible changes in turbidity, and (iv) quick-freezing freeze-fracture electron microscopy. Destabilization is followed by the fluorescence increase caused by the leakage of coencapsulated ANTS/DPX or of calcein. Ca2+ and Mg2+ also induce fusion of these vesicles at 3 and 4 mM, respectively. The threshold for fusion is at a higher pH in the presence of low (subfusogenic) concentrations of these divalent cations. Vesicles composed of phosphatidylserine/phosphatidylethanolamine or of oleic acid/phosphatidylcholine (3:7 mole ratio) do not aggregate, destabilize, or fuse in the pH range 7-4, indicating that phosphatidylserine and phosphatidylcholine cannot be substituted for oleic acid and phosphatidylethanolamine, respectively, for proton-induced membrane fusion. Freeze-fracture replicas of oleic acid/phosphatidylethanolamine liposomes frozen within 1 s of stimulation with pH 5.3 display larger vesicles and vesicles undergoing fusion, with membrane ridges and areas of bilayer continuity between them. The construction of pH-sensitive liposomes is useful as a model for studying the molecular requirements for proton-induced membrane fusion in biological systems and for the cytoplasmic delivery of macromolecules.  相似文献   

19.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   

20.
The structure and membrane interaction of the internal fusion peptide (IFP) fragment of the avian sarcoma and leucosis virus (ASLV) envelope glycoprotein was studied by an array of biophysical methods. The peptide was found to induce lipid mixing of vesicles more strongly than the fusion peptide derived from the N-terminal fusion peptide of influenza virus (HA2-FP). It was observed that the helical structure was enhanced in association with the model membranes, particularly in the N-terminal portion of the peptide. According to the infrared study, the peptide inserted into the membrane in an oblique orientation, but less deeply than the influenza HA2-FP. Analysis of NMR data in sodium dodecyl sulfate micelle suspension revealed that Pro13 of the peptide was located near the micelle-water interface. A type II beta-turn was deduced from NMR data for the peptide in aqueous medium, demonstrating a conformational flexibility of the IFP in analogy to the N-terminal FP such as that of gp41. A loose and multimodal self-assembly was deduced from the rhodamine fluorescence self-quenching experiments for the peptide bound to the membrane bilayer. Oligomerization of the peptide and its variants can also be observed in the electrophoretic experiments, suggesting a property in common with other N-terminal FP of class I fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号