首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How tree morphology develops in mixed-species stands is essential for understanding and modelling mixed-stand dynamics. However, research so far focused on the morphological variation between tree species and neglected the variation within a species depending on intra- and interspecific competition. Our study, in contrast, addresses crown properties of nine mature Norway spruces (Picea abies [L.] Karst.) of a pure stand and compares them with ten spruces growing in mixture with European beech (Fagus sylvatica [L.]). The same was done with 11 pure stand beeches and 12 beeches growing in mixture with spruce. Through application of a terrestrial laser scanner and a new skeletonization approach, we deal with both species’-specific morphological traits such as branch angle, branch length, branch bending, crown volume and space occupation of branches within the crown, some of which were hardly accessible so far. Special attention is paid to distinct differences between trees growing in mixed and pure stands: for spruce, our study reveals significantly longer branches and greater crown volumes in the mixed stand when compared to the pure stand. In case of European beech, individuals growing in mixture show flatter branch angles, more distinct ramification, greater crown volumes and a lower share of a single branch’s space occupation in the total crown volume. The results show that the presented methods yield detailed information on the morphological traits analyzed in this study and that interspecific competition on its own may have a significant impact on crown structures. Implications for production ecology and stand dynamics of mixed-species forests are discussed.  相似文献   

2.
This study attempted to detect the impact of ozone on adult trees of Norway spruce ( Picea abies [L.] Karst.) and European beech ( Fagus sylvatica L.) in an experimental mixed stand in Southern Bavaria, Germany. The aim was to examine whether there is a decrease in growth when trees are exposed to higher than atmospheric concentrations of ozone. This exposure was put into effect using a free-air fumigation system at tree crown level. Growth analysis was carried out on a group of 47 spruce and 36 beech trees, where radial stem increment at breast height - a sensitive index for stress - was measured. The ozone monitoring system allowed values to be obtained for the accumulated ozone exposure (SUM00) of each individual tree, so that their radial increment over three years could be correlated with the corresponding ozone exposure for the same time period. Correlation and regression analysis were then carried out to test the influence of ozone on diameter increment. In both spruce and beech, the initial stem diameter was the most influential factor on radial increment in the following year. A linear model was applied, including the diameter of the preceding year and the ozone exposure of the current year as predicting factors. For spruce trees, a significant negative influence of ozone exposure was found. In contrast, no significant ozone effect on diameter increment of beech was detected. The effect of ozone stress on a large spruce tree can lead to a decrease in potential radial increment of 22 %. The results are discussed in relation to other stress factors such as drought and lack of light.  相似文献   

3.
Abstract

Fine roots (<2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors. The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m?2, and that of spruce and pine 297 g m?2 and 277 g m?2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone. The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.  相似文献   

4.
The influence of long-term free-air ozone fumigation and canopy position on leaf contents of total glutathione, its redox state, non-structural proteins (NSP), soluble amino compounds, and total soluble sugars in old-growth beech (FAGUS SYLVATICA) and spruce (PICEA ABIES) trees were determined over a period of five years. Ozone fumigation had weak effects on the analysed metabolites of both tree species and significant changes in the contents of total glutathione, NSP, and soluble sugars were observed only selectively. Beech leaves were affected by crown position to a higher extent than spruce needles and exhibited lower contents of total glutathione and NSP and total soluble sugars, but enhanced contents of oxidised glutathione and amino compounds in the shade compared to the sun crown. Contents of total soluble sugars generally were decreased in shade compared to sun needles of spruce trees. Interspecific differences between beech and spruce were more distinct in the sun compared to the shade crown. Contents of total glutathione were increased whilst contents of amino compounds and total soluble sugars were lower in spruce needles compared to beech leaves. The metabolites determined showed individual patterns in the course of the five measurement years. Contents of total glutathione and its redox state correlated with air temperature and global radiation, indicating an important role for the antioxidant at low temperatures. Correlations of glutathione with instantaneous ozone concentrations seem to be a secondary effect. Differences in proteins and/or amino compounds in the inter-annual course are assumed to be a consequence of alterations in specific N uptake rates.  相似文献   

5.
6.
Relationships between tree parameters above ground and the biomass of the coarse root system were examined in six mixed spruce-beech stands in the Solling Mountain region in northwest Germany. The selected stands were located on comparable sites and covered an age range of 44 to 114 years. Coarse roots (d?\ge?2 mm) of 42 spruce and 27 beech trees were sampled by excavating the entire root system. A linear model with logarithmic transformation of the variables was developed to describe the relationship between the coarse root biomass (CRB, dry weight) and the corresponding tree diameter at breast height (DBH). The coefficients of determination (R 2) attained values between 0.92 for spruce and 0.94 for beech; the logarithmic standard deviation values were between 0.29 and 0.43. A significantly different effect of tree species on the model estimates could not be detected by an analysis of co-variance (ANCOVA). For spruce, the derived relationships were similar to those reported in previous studies, but not for beech. Biomass partitioning in the tree compartments above and below ground differs significantly between spruce (coarse root/shoot ratio 0.16±0.06) and beech (coarse root/shoot ratio 0.10±0.03) in the mixed stands. These results are similar to those given in other studies involving pure spruce and beech stands on comparable sites in the region, although the ratios of pure stands in other regions growing under different site conditions are somewhat higher. Comparing trees of the same DBH classes, root/shoot ratios of spruce are 1.2 to 3 times higher than those of beech. Dominant spruce trees (DBH>60 cm) attained the highest ratios, suppressed beech trees (DBH<10 cm) the lowest. Site conditions of varying climate and soils and interspecific tree competition are likely to affect root/shoot ratio and DBH-coarse root biomass relationships. The greater variability in beech compared with spruce indicates a high 'plasticity' and adaptability of beech carbon allocation. Thus, the derived equations are useful for biomass estimates of coarse roots involving trees of different ages in mixed stands of spruce and beech in the Solling Mountains. However, application of these relationships to stands in other regions would need further testing.  相似文献   

7.

Key message

Beech growth variability and climate sensitivity are much higher in the crown top than in the bole. The most notable bole–crown discrepancies occurred in response to extreme climate conditions.

Abstract

To characterize growth partitioning within the tree and its responses to climate, we studied eight dominant beech trees (Fagus sylvatica L.) of a pure, even-aged 98-year-old stand in Belgium. We sampled ten disks along the stem from breast height to treetop and examined the inter-annual patterns of, and discrepancies between, ring-area and volume increments by performing detailed stem analysis and dendroecological investigations. Although the common inter-annual variation among all increment series was high, we observed increasing growth variability and climate sensitivity with height, leading to notable bole–crown discrepancies. Both the common inter-annual variation and bole–crown discrepancies were mainly driven by summer heat waves and related droughts of the previous year, and spring droughts of the current year. Despite these discrepancies, the radial growth at breast height can be considered a good estimate of the tree volume increment but not for the purpose of focusing on climatic effects of isolated years. Extreme climatic conditions increase the risk of inaccurate estimations. The results of the present study are discussed in relation to tree ecophysiology hypotheses.
  相似文献   

8.

Context

In acidic forest soils, aluminium can alter tree health due to its potential toxicity. Aluminium phytotoxicity is mainly influenced by its chemical form and its availability.

Methods

As physical-chemical indicators of Al toxicity in soil, Al speciation in soil solutions and in the exchange complex was measured in the rhizosphere and the bulk soil of two tree species (Norway spruce (Picea abies (L.) Karst.) and European Beech (Fagus sylvatica L.) in an acidic soil and in 4 months (November, February, May and August) representing the four seasons in a year.

Results

In the bulk soil, Al toxicity was generally higher under Norway spruce than under beech. Furthermore, temporal changes in Al behaviour were identified under Norway spruce but not under beech. The monomeric Al in the soil solutions and the exchangeable Al in the solid soil increased significantly in February under Norway spruce and were positively correlated with nitrate concentration, suggesting that nitrate influence Al speciation and mobility under Norway spruce. In the rhizosphere, Al toxicity was restricted through Al complexation by organic compounds and by nutrient contents independently from the season. The ecological importance of the rhizosphere in Al detoxification is discussed.

Conclusions

This study suggests that plant specific differences as well as seasonal changes in plant physiology, microbial activity and microclimatology influence aluminum toxicity in acid forest soils.  相似文献   

9.
Species mixing is widely held to stabilize productivity, increase resilience and contribute to risk minimization in forest stands in need of special as a result of longevity. However, research on the effects of mixing on productivity and resource consumption so far yielded fairly incoherent results rather than general findings. We focused on the effects of the spatial mixing pattern and the annual climate conditions on the mixing effect, which to date have seldom been considered as modifiers of mixing effects. Nine years of intensive survey of four pure stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) and two mixed plots with different mixing pattern showed: (1) mixing hardly changed annual net primary productivity at stand level when Norway spruce and European beech are cultivated group-wise but increased by 37 % on account of a higher efficiency of water and light use in individual tree-wise mixture. (2) Favourable climatic conditions increased the superiority of mixed versus pure stands productivity, while, in particular, water stress cancelled the benefit of mixing considerably. (3) An interaction between the spatial pattern and variable climatic conditions was revealed. Both improved light and water use were found in favourable years in close inter-specific intermingling. However, in unfavourable years the spatial pattern played a less pronounced role in terms of productivity.  相似文献   

10.
Morphological plasticity was studied for advanced regeneration trees in different light environments of the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were very shade tolerant silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.), and midtolerant Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected for measurements in different stands from two different geographical locations. Various morphological traits (specific leaf area, live crown ratio, crown width to length ratio, terminal to lateral ratio, number of internodal shoots, number of shoots in terminal whorl, stem symmetry, stem orientation, stem forking) for each regenerating tree were measured during summers of 2001 and 2002. Percentage of above canopy light and stand basal area measures were used to assess the available growing space for each seedling/sapling. Regression relationships were developed for the different morphological indicators as a function of these two variables. All species adapted their morphology along the gradient in light and basal area. Spruce seemed to be less adapted to low light conditions than both fir and beech. However, no significant differences in terms of shade tolerance were detected using the above indicators. In really dense stand conditions (less than 20% above canopy light and stand basal area above 36 m2 ha−1), probability for stem forking in beech increased. In open, all three species adapted their morphology for vigorous growth. Under such conditions, spruce was better adapted than fir.  相似文献   

11.
Qian  X.M.  El-Ashker  A.  Kottke  I.  Oberwinkler  F. 《Plant and Soil》1998,199(1):111-116
Recent tree decline was hypothesized to be connected to root damage caused by soil acidification and increased frequency of pathogenic root colonizing fungi. The rhizoplane is constituted by the mycorrhizal sheath and a high diversity of microfungi, some of which are known to behave antagonistically against pathogens. Disturbance of the balance between pathogens and antagonists by soil acidification may endanger the health of tree roots. Liming may stabilize the interactions. The microfungal populations connected to the mycorrhizoplane of Norway spruce (Picea abies) and beech (Fagus sylvatica) were, therefore, investigated on experimental Norway spruce plots that had been treated with acidified water or were limed. Beech presented the original forest and was left untreated. Eight microfungal species known as either pathogenic or antagonistic, Trichoderma viride, T. hamatum, T. polysporum, Cylindrocarpon destructans, Sesquicillium candelabrum, Mycelium radicis atrovirens, Tolyplocladium geodes and Oidiodendron maius, were isolated from the mycorrhizoplanes and their abundance in the five different plots compared. Acidification enhanced the frequency of Mycelium radicis atrovirens and Oidiodendron maius but reduced Trichoderma viride. Liming promoted Sesquicillium candelabrum and Cylindrocarpon destructans. Detailed analysis of the population patterns indicated that changes in the frequency of a particular fungal species may not only be caused by shift of chemical soil factors but also by antagonistic interactions between the microfungi, thus reducing pathogenic attacks on rootlets.  相似文献   

12.
Water-plant relations play a key role in the water cycling in terrestrial ecosystems. Consequently, changes in tree species composition may have distinct effects on the water retention capacity as well as on the pattern of streamflow generation. Such changes may result from modified interception properties and transpiration related to differences in canopy properties and root distribution. In order to evaluate the potential hydrological effects of the current silvicultural conversion from monocultural conifer stands into mixed or pure deciduous stands the hydrological model BROOK90 was applied to two forested upland catchments in Germany. The Rotherdbach catchment (9.4 ha, 93 yr-old Norway spruce) is situated in the Eastern Ore Mountains. The Schluchsee catchment (11 ha, 55-yr-old Norway spruce) is located in the higher altitudes of the Black Forest. The calibrated model is capable to describe rather well the temporal variation of streamflow but also the portions of the individual flow components. Data for a beech scenario were adapted for each site using a standard parameter set for deciduous trees provided by BROOK90. The annual discharge in the fictional beech stand at Rotherdbach is 30 to 50% higher compared to spruce with an increase of soil moisture and especially the slow streamflow components. This mainly results from low interception rates during winter time. In contrast, the spruce stand has a permanently higher interception rate. Effects of tree species conversion are moderate at Schluchsee. The annual discharge of a fictional beech stand at Schluchsee is 7 to 14% higher compared to spruce. There in contrast to Rotherdbach, effects of tree species conversion on soil moisture dynamics are small since vertical percolation in the highly permeable soil dominates and precipitation is abundant. Practical forestry will favorably establish mixed beech–spruce rather than pure beech stands. However, it is critical to simulate mixed stands with BROOK90. Therefore, a simple summation of model results from spruce and beech according to their respective area in a fictional mixed stand can only be a first approximation. Advanced hydrological simulation of mixed stand conditions should regard interactions of tree species and spatial parameter distribution. However, this is not yet feasible due to a distinct lack of information. As a consequence, there is a strong need to collect relevant hydrological and ecophysiological data in mixed stands in the future.  相似文献   

13.
The characteristics of spruce individuals, which survived a massive bark beetle outbreak, were compared with the characteristics of neighbouring attacked trees in Šumava National Park (Czech Republic). Selected parameters related to crown geometry, stand conditions and distances between trees were measured or estimated. Significant differences were found between the surviving trees and the neighbouring trees attacked by I. typographus. Trees with a higher level of stem shading (longer crown length) tended to survive. The attacked trees were usually located in areas with larger basal area, especially southwards from them. A shorter distance to a previously attacked tree increased the probability of additional attack. Spruce trees with more progressive crown structure transformation (primary structure defoliation) were significantly more frequently attacked by spruce bark beetle. Superior and taller trees had a clearly longer life expectancy than dominant ones. These results show that the attack of trees by bark beetle can be predicted to a certain degree, which can be used in management of endangered spruce forests.  相似文献   

14.
北京地区侧柏人工林密度效应   总被引:9,自引:2,他引:9  
密度是影响森林尤其是人工林生长的重要因素,林冠层是森林生态系统与其他系统进行能量和物质交换的重要场所,树木及树冠生长对林分密度的响应关系可以看作是生物对环境变化产生的适应性现象。林分密度效应是生态学和森林培育学的重要研究内容之一。以23块8种不同密度梯度的北京山区侧柏人工幼龄林林分为研究对象分析其树木生长及树冠生长对密度的响应关系,其中树冠指标使用了参照了美国林务局(USDA)的树冠调查指标。研究结果表明:(1)林分平均胸径、平均树高和平均冠幅生长均随密度增大而减小,林分密度大于3000株/hm2时各指标减小的趋势变缓,使用异速生长模型可以很好地拟合这种变化关系;(2)随密度增加,树冠水平方向和垂直方向生长均到显著地抑制作用,树冠外形表现出由饱满冠型向狭长冠型变化的适应性现象;(3)使用树冠二维、三维指标与密度进行相关性分析可知树冠长度、树冠率等指标与林分密度呈负相关关系,树冠圆满度及树冠生产效率与密度表现出极显著正相关关系;(4)采用枝解析的方法研究了树枝长度、材积的平均生长量、连年生长量与密度的关系,结果表明幼龄期各生长量差异不大;(5)在建立冠幅模型时考虑了自变量间的多重共线性问题,所建的胸径单自变量二次方模型能够很好地预测侧柏人工幼龄林冠幅生长过程,模型相关系数R2为0.961。  相似文献   

15.
In this paper, the relationship among nature stand production of Picea asperata forest and ecology environment condition was studied. The nature stand average net- primary-production of P. asperata is 5626kg/ha/a, photo-energy utilize rate (P) is 1.63%, general production (Pg) is 18.85 kcal/m2/d. Spruce tree average net-primary- production (NPP) is 4676 kg/ha/a, P is 1.35%, and Pg is 15.57 kcal/m2/d. The close relationship among ecology environment condition, leaf area index (LAI) and NPP of stand and spruce tree was further studied. It was discovered that among NPP of stand and spruce tree and elevation, slope direction, and stand density are quadric curve correlation; among NPP of stand and spruce tree and soil thickness, LAI is linear correlation, these mathematical model was builded. The poly-factor regression relationship among the NPP of stand and spruce tree and LAI, gradient, elevation, stand density, nomal density, soft thickness, rate of stand grade I tree and slope direction was studied and statistics analysised. In different condition, the photoenerge utilize rate, general production and economy coefficient was further system studied from plant physiology-ecology.  相似文献   

16.
Questions: How to evaluate the mixture effect on basal area increment in two‐species forest stands? Is a mixed Norway spruce–silver fir stand more productive than pure adjacent stands of either species? How to develop generic modelling approaches to assess mixture effects in forest stands? Location: In addition to a case study on Norway spruce–silver fir stands in French mountain forests, the generic approach used goes beyond local applications. Methods: We took advantage of National Forest Inventory data to develop a unique stand basal‐area‐increment model for pure and mixed stands of Norway spruce and silver fir that responds to ecological site conditions. The database was made up of 284 pure Norway spruce stands, 196 pure silver fir stands, and 323 mixed stands of these species. Results: Pure silver fir basal area increment is strongly influenced by spring climatic conditions, whereas pure Norway spruce is more influenced by soil conditions. The mixture of these species has a positive effect on silver fir, which decreases as the proportion of fir increases. In contrast, the mixture has no noticeable effect on Norway spruce. Conclusion: We developed a stand basal‐area‐increment model evidencing an advantage of the mixture on silver fir basal area increment, but not on Norway spruce. The mathematical formulation of the model developed is generic and can be used in all two‐species mixture situations. It also makes it possible to compare different mixture situations with each other.  相似文献   

17.
1. Three permanent plots (100×0 m) were established in the subalpine Norway spruce (Picea abies (L.) Karst.) forest of Paneveggio in the spring of 1993, to begin a long-term forest ecosystem research project. The main purpose of these plots was to provide information about subalpine Norway spruce stand dynamics and to provide suggestions for close-to-nature silviculture. 2. The three stands were selected to represent the most common forest structures in the Paneveggio forest. The first stand is close to forestry roads, has a relatively regular and continuous canopy, and thinning and cutting operations only ended in the 1980s; the second stand is far from forest roads and has developed without anthropogenic influence for several decades; the third one is located at the present upper limit of the pure spruce forest and, apparently, was heavily used in the past as a pasture. 3. The first step in the investigation was to describe the structure and to study the history of the three stands using both written evidence from manage- ment plans and biological archives from tree rings. 4. The stands in plots 1 and 2 began to establish after a disturbance that removed part of the previous stands according to dendroecological studies, which are partially supported by written evidence. The remaining parts of these stands were eliminated by two major disturbances that occurred during the following decades. Written records about the use of the forest lead us to assume that the initial disturbances that occurred in the two stands were logging activities as a part of a group shelterwood system. The stand in plot 2 has developed without significant human interference for about half a century as confirmed by the presence of many dead trees. The stand in plot 3 consists of old trees that were part of an open stand and a secondary population that established after cessation of grazing. 5. The study has confirmed that dendroecological techniques can be used to identify occurrence and intensity of previous disturbance in forests stands, although at Paneveggio it is difficult to distinguish between natural and anthropogenic disturbances in the tree ring record. The presence of human activity necessitates investigation of multiple lines of evidence. 6. Paneveggio's forest management plans were useful in the interpretation of the data obtained through dendroecological analysis, although events did not always correspond because data from the management plans (yearly thinning, felling, wind-throw damage) never gave stand-level details, but applied to areas of several hectares. Despite these limitations, the information included in the management plans is of crucial importance in studying stand history and only by using all these sources of information is it possible to delineate the most important features of the history and disturbance that affected the origin and subsequent growth of the forest stands.  相似文献   

18.
This study tests the hypotheses that (1) the above-ground structure of Norway spruce (Picea abies [L] Karst.) is derivable from the functional balance theory, and that (2) crown ratio is a key source of structural variation in trees of different age and social position. Twenty-nine trees were measured in three stands (young, middle-aged, and mature), with three thinning treatments (unthinned, normal, and intensive) in the two older stands. There was a strong linear relationship between the total cross-sectional area of branches and that of stem at crown base. Foliage mass was linearly related with stem basal area at crown base. Also an allometric relationship was found between foliage mass and crown length. The mean length (weighted by basal area) of branches obeyed an exponential function of crown length. The parameters of most of these relationships were independent of slenderness (tree height/breast height diameter) and tree age However, total branch cross-sectional area per stem cross-sectional area in the young trees was greater than in the older trees. The young trees also had slightly shorter branches than predicted by the mean branch length equation. This was probably caused by branch senescence which had not yet started in the young stand. The older trees had a relatively long lower crown segment which was growing slowly and senescing. It was proposed that a segmented crown structure is characteristic of shade tolerant tree species, and that the structural model could be further developed by making the two segments explicit.  相似文献   

19.
In Central Europe, Fagus sylvatica and Picea abies represent contrasting extremes in foliage type, crown structure and length of growing season. In order to examine the competitive strategies of these two co-occurring species, we tested the following hypotheses: (1) the space occupied by the foliage of sun branches is characterized by greater foliar mass investment compared to shade branches, (2) the carbon (C) gain per unit of occupied space is greater in sun than in shade branches, and (3) annual C and water costs of the foliage for sustaining the occupied space are low, wherever C gain per unit of occupied space is low. These were investigated in a mature forest in Southern Germany. The examination was based on the annual assessment of space-related resource investments and gains of the foliage. The foliated space around branches was regarded as the relevant volume with respect to aboveground resource availability. Occupied crown space per standing foliage mass was higher in shade compared to sun branches of beech, whereas no difference existed in crown volume per foliage mass between sun and shade branches of spruce (hypothesis 1 accepted for beech but rejected for spruce). However, beech occupied more space per foliage mass than spruce. The C gain per occupied crown volume was greater in sun than in shade branches (hypothesis 2 accepted) but did not differ between species. The amount of occupied space per respiratory and transpiratory costs did not differ between species or between sun and shade branches. In beech and spruce, the proportion of foliage investment in the annual C balance of sun and shade branches remained rather stable, whereas respiratory costs distinctly increased in shade foliage. Hence, shade branches were costly structures to occupy space, achieving only low and even negative C balances (rejection of hypothesis 3), which conflicts with the claimed C autonomy of branches. Our findings suggest that competitiveness is determined by the standing foliage mass and the annual branch volume increment rather than annual investments in foliage. Expressing competitiveness in terms of space-related resource investments versus returns, as demonstrated here, has the potential of promoting mechanistic understanding of plant–plant interactions.  相似文献   

20.
A 2-yr phytotron study was conducted to investigate the intra- and inter-specific competitive behaviour of juvenile beech (Fagus sylvatica) and spruce (Picea abies). Competitiveness was analysed by quantifying the resource budgets that occur along structures and within occupied space of relevance for competitive interaction. Ambient and elevated CO(2) and ozone (O(3)) regimes were applied throughout two growing seasons as stressors for provoking changes in resource budgets, growth and allocation to facilitate the competition analysis. The hypothesis tested was that the ability to sequester space at low structural cost will determine the competitive success. Spruce was a stronger competitor than beech, as displayed by its higher above-ground biomass increments in mixed culture compared with monoculture. A crucial factor in the competitive success of spruce was its ability to enlarge crown volume at low structural costs, supporting the hypothesis. Interspecific competition with spruce resulted in a size-independent readjustment of above-ground allocation in beech (reduced leaf : shoot biomass ratio). The efficient use of resources for above-ground space sequestration proved to be a parameter that quantitatively reflects competitiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号