共查询到20条相似文献,搜索用时 15 毫秒
1.
Caesium-affected gene expression in Arabidopsis thaliana 总被引:5,自引:0,他引:5
2.
3.
4.
5.
6.
7.
8.
Rita Gandhi Satish C. Maheshwari Paramjit Khurana 《In vitro cellular & developmental biology. Plant》1999,35(3):232-237
Summary The influence of a variety of parameters was investigated on polyethylene glycol (PEG)-mediated transient nptII and gus gene expression in mesophyll protoplasts of Arabidopsis thaliana ecotype, Estland, in order to develop a suitable transient gene expression system. The investigation revealed that a combination
of 20% PEG, incubation time of 15 min, 20–30 μg plasmid concentration per ml along with 50 μg carrier DNA m/l, and inclusion
of calcium and magnesium ions during transfection followed by a culture period of 24 h registered maximum NPTII activity.
Of the various promoters used for driving expression of the gus gene, the ubiquitin promoter from A. thaliana was the most efficient followed by 35S promoter of the CaMV and the actin promoter of rice. For comparison, similar studies in protoplasts of rice, wheat, and Brassica also revealed the differences in strength of these promoters. Arabidopsis ubiquitin promoter was the most effective in Brassica, and the rice actin1 promoter was the most effective in rice and wheat. 相似文献
9.
M. Torki P. Mandaron F. Thomas F. Quigley R. Mache D. Falconet 《Molecular genetics and genomics : MGG》1999,261(6):948-952
By systematic sequencing of a flower bud cDNA library from Arabidopsis thaliana, we have identified four cDNAs encoding polygalacturonase. The corresponding genes, together with seven other A. thaliana genes present in the databases, form a small gene family. Sequence comparisons of the deduced polypeptides within the gene family or with other plant polygalacturonases allow classification of the genes into different clades. Five polygalacturonases, including all those isolated from the flower buds, are closely related to the enzyme in pollen. Of the six remaining polygalacturonases, three are more closely related to the abscission-specific type of enzyme and two others to the fruit polygalacturonase. The last one is more distantly related to the others and might correspond to a new type of polygalacturonase. Expression of the different genes was analysed on Northern blots and by a PCR-based strategy. Results indicate that if, as expected, the cDNAs isolated from the flower bud library are strongly expressed in pollen, other genes are expressed at a low level in young developing tissues, such as in seedlings and roots, suggesting that they could be implicated in the cell wall modifications observed during cell elongation and/or expansion which occur in these tissues. 相似文献
10.
We analyzed the complete genome sequence of Arabidopsis thaliana and sequence data from 83 genes in the outcrossing A. lyrata, to better understand the role of gene expression on the strength of natural selection on synonymous and replacement sites in Arabidopsis. From data on tRNA gene abundance, we find a good concordance between codon preferences and the relative abundance of isoaccepting tRNAs in the complete A. thaliana genome, consistent with models of translational selection. Both EST-based and new quantitative measures of gene expression (MPSS) suggest that codon preferences derived from information on tRNA abundance are more strongly associated with gene expression than those obtained from multivariate analysis, which provides further support for the hypothesis that codon bias in Arabidopsis is under selection mediated by tRNA abundance. Consistent with previous results, analysis of protein evolution reveals a significant correlation between gene expression level and amino acid substitution rate. Analysis by MPSS estimates of gene expression suggests that this effect is primarily the result of a correlation between the number of tissues in which a gene is expressed and the rate of amino acid substitution, which indicates that the degree of tissue specialization may be an important determinant of the rate of protein evolution in Arabidopsis. 相似文献
11.
12.
Jin Z Shen J Qiao Z Yang G Wang R Pei Y 《Biochemical and biophysical research communications》2011,(3):481-486
Hydrogen sulfide (H2S) plays a crucial role in human and animal physiology. Its ubiquity and versatile properties have recently caught the attention of plant physiologists and biochemists. Two cysteine desulfhydrases (CDes), l-cysteine desulfhydrase and d-cysteine desulfhydrase, were identified as being mainly responsible for the degradation of cysteine in order to generate H2S. This study investigated the expression regulation of these genes and their relationship to drought tolerance in Arabidopsis. First, the expression pattern of CDes in Arabidopsis was investigated. The expression levels of CDes gradually increased in an age-dependent manner. The expression of CDes was significantly higher in stems and cauline leaves than in roots, rosette leaves and flowers. Second, the protective effect of H2S against drought was evaluated. The expression pattern of CDes was similar to the drought associated genes induced by dehydration, and H2S fumigation was found to stimulate further the expression of drought associated genes. Drought also significantly induced increased H2S production, a process that was reversed by re-watering. In addition, seedlings after treatment with NaHS (a H2S donor) showed a higher survival rate and displayed a significant reduction in the size of the stomatal aperture compared to the control. These findings provide evidence that H2S, as a gasotransmitter, improves drought resistance in Arabidopsis. 相似文献
13.
14.
15.
Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant 总被引:6,自引:0,他引:6
Lee H Xiong L Ishitani M Stevenson B Zhu JK 《The Plant journal : for cell and molecular biology》1999,17(3):301-308
Low temperature is an important environmental factor influencing plant growth and development. In this study, we report the characterization of a genetic locus, HOS2, which is defined by three Arabidopsis thaliana mutants. The hos2-1, hos2-2 and hos2-3 mutations result in enhanced expression of RD29A and other stress genes under low temperature treatment. Gene expression in response to osmotic stress or ABA is not affected in the hos2 mutants. Genetic analysis indicates that the hos2 mutations are recessive and in a nuclear gene. Compared with the wild-type plants, the hos2-1 mutant plants are less capable of developing freezing tolerance when treated with low non-freezing temperatures. However, the hos2-1 mutation does not impair the vernalization response. These results indicate that HOS2 is a negative regulator of low temperature signal transduction important for plant cold acclimation. 相似文献
16.
17.
Sugar-inducible expression of a gene for beta-amylase in Arabidopsis thaliana. 总被引:1,自引:2,他引:1
下载免费PDF全文

The levels of beta-amylase activity and of the mRNA for beta-amylase in rosette leaves of Arabidopsis thaliana (L.) Heynh. increased significantly, with the concomitant accumulation of starch, when whole plants or excised mature leaves were supplied with sucrose. A supply of glucose or fructose, but not of mannitol or sorbitol, to plants also induced the expression of the gene for beta-amylase, and the induction occurred not only in rosette leaves but also in roots, stems, and bracts. These results suggest that the gene for beta-amylase of Arabidopsis is subject to regulation by a carbohydrate metabolic signal, and expression of the gene in various tissues may be regulated by the carbon partitioning and sink-source interactions in the whole plant. The sugar-inducible expression of the gene in Arabidopsis was severely repressed in the absence of light. The sugar-inducible expression in the light was not inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea or by chloramphenicol, but it was inhibited by cycloheximide. These results suggest that a light-induced signal and de novo synthesis of proteins in the cytoplasm are involved in the regulation. A fusion gene composed of the 5' upstream region of the gene for beta-amylase from Arabidopsis and the coding sequence of beta-glucuronidase showed the sugar-inducible expression in a light-dependent manner in rosette leaves of transgenic Arabidopsis. 相似文献
18.
Chiaki Zenko Ryusuke Yokoyama Kazuhiko Nishitani Seiichiro Kamisaka 《Biological Sciences in Space》2004,18(3):162-163
Hypergravity stimulus suppresses plant shoot growth by making the cell wall rigid. Xyloglucan endotransglucosylase/hydrolase (XTH) is involved in determining the rigidity of cell walls. We demonstrated that hypergravity influenced the expression of some XTH genes in shoots of Arabidopsis thaliana L.; in response to hypergravity stimulus of 300 g, the expression of AtXTH22 was up-regulated, while that of AtXTH15 was down-regulated. The effect of hypergravity on the expression of these genes was nullified by lanthanum chloride at 0.1 mM, suggesting that the expression of these XTH genes in Arabidopsis is under the control of the mechanoreceptor. 相似文献
19.
Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana. 总被引:2,自引:0,他引:2
Norflurazon (NF), a photobleaching herbicide, inhibits carotenoid biosynthesis. Lack of carotenoid pigments leads to photooxidative damage of chloroplasts. In this study of Arabidopsis thaliana we demonstrate that NF-treated photobleached plants are still able to make 5-aminolevulinic acid (ALA) the first precursor of porphyrins and tetrapyrroles. ALA is formed in the tRNA-dependent two-step C5-pathway in the chloroplast of plants. The expression of glutamyl-tRNA reductase (GluTR), the first enzyme in the pathway, was severely inhibited by NF, while treatment with this compound did not significantly reduce the levels of the other enzyme, glutamate-l-semialdehyde aminomutase, or of tRNA(Glu), the initial metabolite of the pathway. Extracts of these plants retained the capacity, albeit reduced, to convert exogenously added glutamate to ALA. Thus, the much-reduced level of ALA formation in photobleached plants is due to selective inhibition of GluTR expression. 相似文献
20.
Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana 总被引:22,自引:0,他引:22
We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg erecta) and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms. 相似文献