首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is generally accepted that ischemia produced by limb compression affects rapidly conducting large-diameter Ia afferents in the early stage and that the motor nerve-muscle complex is blocked later. This notion, however, seems to be controversial for several reasons, so an attempt to reveal the amount of motor unit (MU) impairment during ischemia was made. Observation of human soleus muscle electromyographic (EMG) signal recorded either by bipolar needle electrode or by surface electrodes at various levels of voluntary contraction during the course of ischemia showed that low-threshold small MUs were affected first while high-threshold large MUs survived longer. The changes in EMG patterns were temporally correlated with T-reflex deterioration. It is suggested that the early loss of low-threshold MUs may play a definite role in alterations of reflexes during ischemia.  相似文献   

3.
4.
The purpose of the study was to analyze the interspecies differences of motor unit contractile properties in two most frequently studied mammals: cats and rats. A total sample of 166 motor units (79 in cats and 85 in rats) was investigated in the medial gastrocnemius muscle. Considerable differences were found in composition of the studied muscle. In cats, fast fatigable, fast resistant and slow units formed 68, 18 and 14% of the investigated population, whereas in rats 36, 52 and 12%, respectively. The contraction and relaxation times of motor units in the cat muscle were evidently longer than in the rat and the border values for fast/slow motor units division in these species were 44 and 20 ms, respectively. The mean values of twitch and tetanic forces appeared to be 7-8 times lower in rats, for fast, while 2-5 times for slow motor units. Also variability between the strongest and the weakest units within each type revealed differences 10-60 times in cats, whereas only 3.5-14 times in rats. The summation of twitches into tetanus for fast units was comparable in both species, but for S units was evidently more effective in the cat. In fast motor units' tetanic contractions evident interspecies differences concerned sag appearance and profiles of unfused tetani of FF and FR units. Differences in contractile properties described in the study may depend on the size, number and innervation ratio of motor units in the muscle of cat and rat, as well as their biochemical variability. Differences in composition of motor unit types and uneven mechanisms of force development may reflect biological adaptation to variable behaviour of cats and rats.  相似文献   

5.
6.
We studied the fiber type composition and contractile properties of mouse soleus motor units at 2 days, 5 days and 2 weeks of age. We used Lucifer Yellow injection to mark muscle fibers belonging to the same motor unit in the two youngest age groups, and the traditional method of glycogen depletion in the oldest. The age groups were chosen because 2 days is at the end of muscle fiber production; 5 days is at the start of synapse elimination in the muscle and 2 weeks is at the end. Muscle fibers were classified as fast (F) or slow (S) on the basis of their myosin heavy chain (MHC) content, as determined by different monoclonal antibodies. Motor units are already dominated by either F- or S-fibers at 2 days, suggesting an early preferential innervation of the two types of fibers. A substantial part of the remaining refinement of the innervation takes place during the next 3 days, while the total number of terminals in the muscle remains constant. This is most easily explained by an exchange of aberrant for correct synapses during this period. A smaller part of the refinement of the innervation occurs during the subsequent period of synapse elimination.  相似文献   

7.
Tonic vibration reflex was produced in the human soleus muscle by vibrating the tendon at the rate of 30–180 Hz and motor unit potentials were recorded. A correlation was found between the points at which these potentials occurred and vibratory stimuli over lower ranges of vibration rates (of up to 70–80 Hz) in all motor units, indicative of discrete bursts in the synaptic inflow to the motoneuron matching the vibratory stimuli. The correlation disappeared with an increase in vibration rate and manifested at high as well as low vibration rates in voluntarily contracted muscle. Since vibration is known to (presynaptically) depress monosynaptic reflexes induced by activating primary spindle endings, it is suggested and maintained that the correlation found at low vibration rate ranges could result from activating vibrational stimuli of secondary spindle endings which act on motoneurons via short pathways, thus evoking discrete motoneuronal EPSP.Information Transmission Research Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 765–772, November–December, 1989.  相似文献   

8.
Post-tetanic potentiation was measured in motor units, isolated functionally by ventral root splitting, of soleus and extensor digitorum longus muscles of mouse. All motor units from the extensor digitorum longus had times to peak twitch tension less than 13 ms; there was a linear relationship between time to peak tension and post-tetanic potentiation, with the faster units exhibiting greater potentiation. When soleus motor units were similarly analyzed, it appeared that there may be two distinct populations of units. Those units with times to peak tension less than 13 ms were virtually indistinguishable from those of extensor digitorum longus. On the other hand, the slope of the relationship between post-tetanic potentiation and time to peak tension was significantly lower for soleus units with times to peak tension of 13 ms or more. Approximately three-quarters of the soleus units were of the latter slow type, whereas only one-half of the muscle fibres could be classified as type I by means of immunohistochemistry, suggesting that the myosin heavy chain may not be the major determinant of post-tetanic potentiation. Single, chemically skinned fibres of soleus were analyzed for myosin heavy and light chain components by polyacrylamide gel electrophoresis. All fibres with type I heavy chain contained only the two slow light chains. On the other hand, almost all of the fibres with type IIA myosin heavy chain contained both fast and slow light chains. It is suggested that the discrepancy between the proportions of physiologically "fast" motor units and histochemical type IIA fibres may be the consequence of variable amounts of slow light chain associated with the fast IIA myosin heavy chain.  相似文献   

9.
10.
The effects of changing muscle length on the mechanical properties of 89 motor units from adult cat medial gastrocnemius have been studied in eight experiments. Few differences were found between the effects of length on tetanic tension, twitch tension, twitch-tetanus ratio, twitch contraction time, twitch half relaxation time, rate of force development and electrical activity for fast contracting (twitch contraction time less than or equal to 45 msec) and slowly contracting (greater than 45 msec) units. Those differences that did appear did not persist when these two groups were matched by tetanic tension. It is concluded that the biophysical mechanisms responsible for the changes in mechanical and electrical properties with length must be similar for fast and slow twitch units and not related to potential differences in their muscle fiber type. The effects of changing muscle length on the mechanical properties of the eight whole muscles suggest that changes in force output with length are of minor importance during normal movements as the muscle is found to be electrically active over a relatively narrow range of lengths close to the optimum length for tetanus of the whole muscle. The very shortest muscle lengths at which there is only minimal force development are not used in natural movements, while the declining limb of the length tension curve is at muscle lengths beyond the maximum in situ length.  相似文献   

11.
Digit flexor muscles in the cat: their action and motor units   总被引:1,自引:0,他引:1  
The relation between muscle action and the mechanical properties of motor units has been explored in the main digit flexors of the cat hind limb: plantaris (PL); flexor digitorum brevis (FDB); flexor hallucis longus (FHL); and, flexor digitorum longus (FDL). General observations on muscle action revealed that PL is an ankle extensor as well as a digit flexor. PL and FHL were shown to be the major force contributors to digit flexion with FDL playing a lesser but still significant role. The mechanical properties of PL, FHL and FDB motor units were studied by noting twitch and tetanic tensions produced by electrical stimulation of single alpha axons, functionally isolated from the ventral root filaments. These data were compared to similar data reported by Olson and Swett (1966) for flexor digitorum longus (FDL). Our sample (114 PL, 60 FDB and 124 FHL units) disclosed that PL, FDB and FHL have units of uniformly fast contraction times (means 22, 27 and 27 msec respectively). PL units developed the most tetanic tension (3 to 160, mean 62 gm-wt) followed by FHL (2 to 87, mean 31 gm-wt) with FDB units producing very little tension (1 to 20, mean 6 gm-wt). Swett and Olson's FDL sample (108 units) showed tensions ranging from 0.3 to 100 gm-wt (mean 10 gm-wt). A division of labor among the four muscles is proposed. The large PL units are advantageous for forceful phasic inputs to the digits during the locomotion and in keeping with PL's additional role as an ankle exstensor. The low output forces of FDB units are optimal for discrete input to the digits during subtle adjustments of posture. We propose that the larger fast contracting units of FHL are used primarily for forceful digit flexions required in locomotion and for phasic protrusion of the claws while the predominately small and slow contracting units of FDL are used for sustained claw protrusion.  相似文献   

12.
The purpose of this study was to measure isometric force-length properties of cat soleus, gastrocnemius and plantaris muscle-tendon units, and to relate these properties to the functional demands of these muscles during everyday locomotor activities. Isometric force-length properties were determined using an in situ preparation, where forces were measured using buckle-type tendon transducers, and muscle-tendon unit lengths were quantified through ankle and knee joint configurations. Functional demands of the muscles were assessed using direct muscle force measurements in freely moving animals. Force-length properties and functional demands were determined for soleus, gastrocnemius and plantaris muscles simultaneously in each animal. The results suggest that isometric force-length properties of cat soleus, gastrocnemius and plantaris muscles, as well as the region of the force-length relation that is used during everyday locomotor tasks, match the functional demands.  相似文献   

13.
Using isolated ventral root filament stimulation and glycogen depletion techniques, 14 motor units from the cat tibialis anterior were studied. Based on their mechanical properties, the units were classified as either slow-fatigue resistant, fast-fatigue resistant, fast-fatigue intermediate, or fast-fatigable. Quantitative histochemical and computer assisted image analysis techniques were used to determine the activity of succinate dehydrogenase in a population of fibres in each unit. In addition, the intrafibre distribution of succinate dehydrogenase activity was measured in those same fibres by calculating the enzymatic activity of circumferential layers every 0.5 microns starting from the fibre edge to its centre. It was established that enzymatic activity and radial distance were linearly related in the fibres. A range in succinate dehydrogenase activity (mean coefficient of variation, 29%) was observed among the fibres of a unit. In contrast, the intrafibre distribution of that activity was rather consistent (mean variation, 4%) across the fibres of a unit. Further, the intrafibre distribution was similar among the fibres of units classified as the same type. However, the intrafibre distribution was disparate among the different unit types. These data suggest that the intrafibre distribution of mitochondrial enzymes may contribute to the mechanical properties of a motor unit. In this regard, a hypothesis is proposed that describes how the absolute activity of a mitochondrial enzyme, and the intrafibre distribution of that activity, may interactively contribute to the fatigue resistance of a unit.  相似文献   

14.
Ability of muscle fibers to generate force is decreased when higher frequency of stimulation of motor units immediately follows lower frequency. This phenomenon called tetanic depression was found in rat medial gastrocnemius. However, it was not clear whether tetanic depression occurred only in rat muscle or it concerns all mammals. This study was conducted on motor units of cat medial gastrocnemius. Analyses were made at three successive trains of stimulation: 30 Hz, 20 and 30 Hz and again 30 Hz (the first pattern) or 40 Hz, 25 and 40 Hz and 40 Hz (the second pattern). In all fast units force generated within the middle tetanus was lower than force generated at the same, but constant frequency of stimulation applied earlier or later. The mean tetanic depression in 30 Hz tetani amounted to 10.9% for fast fatigable (FF) and 15.9% for fast resistant (FR) motor units, whereas in 40 Hz tetani mean values were 5.6% and 7.3% for FF and FR motor units, respectively. In slow motor units tetanic depression was not observed. These results proved the existence of tetanic depression in the feline muscle and indicated that its intensity depends on the fusion of tetanus. It has been concluded, that the tetanic depression is a general property of fast motor units in mammals.  相似文献   

15.
Variations in the amplitude of H and M responses of them. soleus related to the variation in intensity of stimulation of then. tibialis comm. were evaluated in five persons with different ratios of the maximum H and maximum M response amplitudes (from 0.27 to 0.75). A decrease in amplitude of the H reflex accompanied by an increase of M response is supposed to be determined by collision of ortho- and antidromically conducted spikes in motoneuronal axons; this makes it possible to quantify the participation of various motoneuronal populations differing in activation thresholds of their axons in H reflex generation. The H response in individuals with a low ratio of the maximum H and M response amplitudes was shown to be due primarily to the involvement of high-threshold motoneurons. When the ratio between the above-mentioned maximum EMG potentials was high, all populations of motoneurons, except very low-threshold ones, participated in the H reflex generation. In all cases, only a portion of high-threshold motoneurons was involved in H activity, which contradicts the so-called size principle.Neirofiziologiya/Neurophysiology, Vol. 25, No. 6, pp. 417–420, November–December, 1993.  相似文献   

16.
Associations were quantified between the control force and fatigue-induced force decline in 22 single fast-twitch-fatigable motor units of 5 deeply anesthetized adult cats. The units were subjected to intermittent stimulation at 1 train/s for 360 s. Two stimulation patterns were delivered in a pseudo-random manner. The first was a 500-ms train with constant interpulse intervals. The second pattern had the same number of stimuli, mean stimulus rate, and stimulus duration, but the stimulus pulses were rearranged to increase the force produced by the units in the control (prefatigue) state. The associations among the control peak tetanic force of these units, 3 indices of fatigue, and total cumulative force during fatiguing contractions were dependent, in part, on the stimulation pattern used to produce fatigue. The associations were also dependent, albeit to a lesser extent, on the force measure (peak vs. integrated) and the fatigue index used to quantify fatigue. It is proposed that during high-force fatiguing contractions, neural mechanisms are potentially available to delay and reduce the fatigue of fast-twitch-fatigable units for brief, but functionally relevant, periods. In contrast, the fatigue of slow-twitch fatigue-resistant units seems more likely to be controlled largely, if not exclusively, by metabolic processes within their muscle cells.  相似文献   

17.
Recent studies have suggested that the mechanical properties of aponeurosis are not similar to the properties of external tendon. In the present study, the lengths of aponeurosis, tendon, and muscle fascicles were recorded individually, using piezoelectric crystals attached to the surface of each structure during isometric contractions in the cat soleus muscle. We used a surgical microscope to observe the surface of the aponeurosis, which revealed a confounding effect on measures of aponeurosis length due to sliding of a thin layer of epimysium over the proximal aponeurosis. After correcting for this artifact, the stiffness computed for aponeurosis was similar to tendon, with both increasing from around 8 F0/Lc (F0 is maximum isometric force and Lc is tissue length) at 0.1 F0 to 30 F0/Lc at forces greater than 0.4 F0. At low force levels only (0.1 F0), aponeurotic stiffness increased somewhat as fascicle length increased. There was a gradient in the thickness of the aponeurosis along its length: its thickness was minimal at the proximal end and maximal at the distal end, where it converged to form the external tendon. This gradient in thickness appeared to match the gradient in tension transmitted along this structure. We conclude that the specific mechanical properties of aponeurosis are similar to those of tendon. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The effects of 28 days of hindlimb suspension (HS) and HS plus 10 daily forceful lengthening contractions on rat soleus muscle fibers were studied. Compared with age-matched controls (CON), soleus wet weights of suspended rats were significantly decreased (approximately 49%). In HS rats, the light adenosinetriphosphatase (ATPase) fibers (staining lightly for myosin ATPase, pH = 8.8) atrophied more than the dark ATPase fibers (staining darkly for myosin ATPase, pH = 8.8). Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities and the proportion of dark ATPase fibers were higher in HS than CON rats. Daily forceful lengthening contractions did not prevent the suspension-induced changes. These results considered in conjunction with a collaborative study on the mechanical properties of HS rats (Roy et al., accompanying paper) suggest a shift in the contractile potential of the muscle following HS without a deficit in SDH, a metabolic property commonly associated with resistance to fatigue. The results support the view that soleus muscle fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that SDH and GPD activity per volume of tissue can be maintained or increased even when there are severe losses of contractile proteins.  相似文献   

19.
The isometric and force-velocity properties of an identified and uniform population of fast-twitch, fatigue-resistant (FR) fibers within the flexor digitorum longus (FDL) muscle were investigated before, immediately after, and during recovery from a fatiguing repetitive isometric stimulus regime (40 Hz for 330 ms every s for 180 s) in the anesthetized cat. It was necessary to determine the smallest fraction of muscle that had the same force-velocity properties as the whole muscle. This was approximately 15% for FDL; if the fraction was less, the maximum speed of shortening was depressed and the a/Po value increased. Motor units were enlarged by partial denervation of the muscle, causing the intact motoneurons to sprout and incorporate more muscle fibers; FR units showed the greatest increase. Immediately after the fatigue regime, maximum isometric tetanic tension declined to 67% but subsequently recovered to 90% of the control value by the end of the 60-min recovery period. Maximum speed of shortening dropped to 71% of the control but after 30 min had recovered and did not differ significantly from control values. It is concluded that the capacity for recovery from fatigue is greater for FR units than for a whole muscle, which also contains fast-fatiguable units, and that the mechanisms involved in the recovery of the maximum isometric tension and maximum speed of shortening are independently regulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号