首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The percentage of bacterial carbon that was derived from exogenous labelled compounds present in the medium during the growth of some methylotrophs on trimethylamine or on non-C1 compounds was determined. Less than 10% of bacterial carbon was derived from acetate during the growth of the obligate methylotrophs 4B6 and C2A1, and of the restricted facultative methylotroph PM6; the other restricted facultative methylotroph W3A1 gave a value of 18%. Corresponding values for three typical facultative methylotrophs growing on trimethylamine were 41, 42 and 52%. Aspartate, fructose, pyruvate and succinate made only a small percentage contribution (0-4 to 12%) to bacterial carbon in 4B6, C2A1, W3A1 and PM6. Washed suspensions of 4B6, C2A1, W3A1 and PM6, all grown on trimethylamine, assimilated labelled acetate only in the presence of trimethylamine and there was a linear relationship between the amount of acetate assimilated and the amount of trimethylamine oxidized. Organisms 4B6, C2A1, W3A1 and PM6 assimilated 14C from labelled acetate predominantly into lipid (except PM6), glutamate, arginine, proline and leucine, whereas the typical facultative methylotrophs assimilated 14C from acetate into lipid, nucleic acid and all the protein amino acids. These results are consistent with the presence of a deficient tricarboxylic acid cycle in the obligate methylotrophs and in the restricted facultative methylotrophs.  相似文献   

2.
Trimethylamine metabolism in obligate and facultative methylotrophs   总被引:13,自引:6,他引:7  
1. Twelve bacterial isolates that grow with trimethylamine as sole source of carbon and energy were obtained in pure culture. All the isolates grow on methylamine, dimethylamine and trimethylamine. One isolate, bacterium 4B6, grows only on these methylamines whereas another isolate, bacterium C2A1, also grows on methanol but neither grows on methane; these two organisms are obligate methylotrophs. The other ten isolates grow on a variety of C(i) and other organic compounds and are therefore facultative methylotrophs. 2. Washed suspensions of the obligate methylotrophs bacteria 4B6 and C2A1, and of the facultative methylotrophs bacterium 5B1 and Pseudomonas 3A2, all grown on trimethylamine, oxidize trimethylamine, dimethylamine, formaldehyde and formate; only bacterium 5B1 and Ps. 3A2 oxidize trimethylamine N-oxide; only bacterium 4B6 does not oxidize methylamine. 3. Cell-free extracts of trimethylamine-grown bacteria 4B6 and C2A1 contain a trimethylamine dehydrogenase that requires phenazine methosulphate as primary hydrogen acceptor, and evidence is presented that this enzyme is important for the growth of bacterium 4B6 on trimethylamine. 4. Cell-free extracts of eight facultative methylotrophs, including bacterium 5B1 and Ps. 3A2, do not contain trimethylamine dehydrogenase but contain instead a trimethylamine monooxygenase and trimethylamine N-oxide demethylase. It is concluded that two different pathways for the oxidation of trimethylamine occur amongst the isolates.  相似文献   

3.
A typical facultative methylotroph Pseudomonas oleovorans oxidizes methanol to formaldehyde by a specific dehydrogenase which is active towards phenazine metosulphate. Direct oxidation of formalydehyde to CO2 via formiate is a minor pathway because the activities of dehydrogenases of formaldehyde and formiate are lwo. Most formaldehyde molecules are involved in the hexulose phosphate cycle, which is confirmed by a high activity of hexulose phosphate synthase. Formaldehyde is oxidized to CO2 in the dissimilation branch of the cycle providing energy for biosynthesis; this confirmed by higher levels of dehydrogenases of glucose-6-phosphate and 6-phosphogluconate during the methylotrophous growth of the cells. The acceptor of formaldehyde (ribulose-5-phosphate) is regenerated and pyruvate is synthesized in the assimilation branch of the hexulose phosphate cycle. Aldolase of 2-keto-3-deoxy-6-phosphogluconate plays an important role in this process. Further metabolism of trioses involves reactions of the tricarboxylic acid cycle which performs mainly an anabolic function due to complete repression of alpha-ketoglutarate dehydrogenase during the methylotrophous growth. The carbon of methanol is partially assimilated as CO2 by the carboxylation of pyruvate or phosphoenolpyruvate. NH+4 is assimilated by the reductive amination of alpha-ketoglutarate.  相似文献   

4.
Cell extracts were used to determine the enzymes involved in the intermediary carbon metabolism of several strains of Shewanella putrefaciens. Enzymes of the Entner-Doudoroff pathway (6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase) were detected, but those of the Embden-Meyerhof-Parnas pathway were not. While several tricarboxylic acid cycle enzymes were present under both aerobic and anaerobic conditions, two key enzymes (2-oxoglutarate dehydrogenase and pyruvate dehydrogenase) were greatly diminished under anaerobic conditions. Extracts of cell grown anaerobically on formate as the sole source of carbon and energy were positive for hydroxypyruvate reductase, the key enzyme of the serine pathway in other methylotrophs, while no hexulose synthase activity was seen.  相似文献   

5.
Abstract Gram-negative methylotrophs contain a high- M r'large' citrate synthase. Gram-positive methylotrophs, on the other hand, contain a 'small' citrate synthase. These differences in M r coincided partly with differences in NADH sensitivity. Citrate synthases from obligate Gram-negative and Gram-positive facultative methylotrophs were insensitive to feedback inhibition by NADH; only the enzymes from Gram-negative facultative methylotrophs were inhibited by NADH.  相似文献   

6.
1. No essential differences were found in the activities of tricarboxylic acid-cycle enzymes in the newly isolated facultative methylotroph Pseudomonas J26 and obligate methylotroph Methylomonas Pl1. 2-Oxoglutarate dehydrogenase and succinate dehydrogenase were absent in Methylomonas Pl1; in Pseudomonas J26 the functioning of the cycle was imparied only on the methanol medium. Citrate synthase of both organisms showed low sensitivity to 2-oxoglutarate, NADH and ATP. 2. In both methylotrophs, methanol dehydrogenase was inhibited non-competitively by ATP: the activity was reduced by half by ATP at a concentration of 5 mM. 3. Concentration of ATP in the log-phase cultures of Methylomonas Pl1 was about twice as high as in Pseudomonas J26 (4.7 and 1.7 mumol/g dry wt., respectively). 4. Differences between the energy state of Methylomonas Pl1 and Pseudomonas J26 might be due to the higher ability of the former to oxidize methanol and/or lower energy requirement for C1 assimilation by the hexulose pathway in the obligate methylotroph.  相似文献   

7.
A facultative methylotrophic bacterium was isolated from enrichment cultures containing methylamine as the sole carbon source. It was tentatively identified as an Arthrobacter species. Extracts of cells grown on methylamine or ethylamine contained high levels of amine oxidase (E.C. 1.4.3.) activity. Glucose- or choline-grown cells lacked this enzyme. Oxidation of primary amines by the enzyme resulted in the formation of H2O2; as a consequence high levels of catalase were present in methylamine-and ethylamine-grown cells. The significance of catalase in vivo was demonstrated by addition of 20 mM aminotriazole (a catalase inhibitor) to exponentially growing cells. This completely blocked growth on methylamine whereas growth on glucose was hardly affected. Cytochemical studies showed that methylamine-dependent H2O2 production mainly occurred on invaginations of the cytoplasmic membrane. Assimilation of formaldehyde which is generated during methylamine oxidation was by the FBP variant of the RuMP cycle of formaldehyde fixation. The absence of NAD-dependent formaldehyde and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formal-dehyde via hexulose phosphate synthase. Enzyme profiles of the organism grown on various substrates suggested that the synthesis of amine oxidase, catalase and the enzymes of the RuMP cycle is not under coordinate control.  相似文献   

8.
The synthesis of methanol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase by pink pigmented facultative methylotrophs (PPFM) has been studied during growth on C1 and multicarbon substrates. In batch cultures, the methanol dehydrogenase activities were higher during slow growth on non-C1-compounds than during fast growth on methanol. Derepression of this enzyme also occurred at slow growth in methanol-limited chemostat culture. Formaldehyde dehydrogenase and formate dehydrogenase remained largely repressed during growth on multicarbon substrates.  相似文献   

9.
Extracts of Pseudomonas C grown on methanol as a sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts. The addition of D-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when D-ribulose 5-phosphate was present in the assay mixtures. The amount of radioactivity found in CO2, was 6;8-times higher when extracts of methanol-grown Pseudomonas C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate. These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

10.
Extracts of Pseudomonas citronellolis cells grown on glucose or gluconate possessed all the enzymes of the Entner-Doudoroff pathway. Gluconokinase and either or both 6-phosphogluconate dehydratase and KDPG aldolase were induced by growth on these substrates. Glucose and gluconate dehydrogenases and 6-phosphofructokinase were not detected. Thus catabolism of glucose proceeds via an inducible Entner-Doudoroff pathway. Metabolism of glyceraldehyde 3-phosphate apparently proceeded via glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase. These same enzymes plus triose phosphate isomerase were present in lactate-grown cells indicating that synthesis of triose phosphates from gluconeogenic substrates also occurs via this pathway. Extracts of lactate grown-cells possessed fructose diphosphatase and phosphohexoisomerase but apparently lacked fructose diphosphate aldolase thus indicating either the presence of an aldolase with unusual properties or requirements or an alternative pathway for the conversion of triose phosphate to fructose disphosphate. Cells contained two species of glyceraldehyde 3-phosphate dehydrogenase, one an NAD-dependent enzyme which predominated when the organism was grown on glycolytic substrates and the other, an NADP-dependent enzyme which predominated when the organism was grown on gluconeogenic substrates.  相似文献   

11.
d-arabino-3-Hexulose 6-phosphate was prepared by condensation of formaldehyde with ribulose 5-phosphate in the presence of 3-hexulose phosphate synthase from methane-grown Methylococcus capsulatus. The 3-hexulose phosphate was unstable in solutions of pH greater than 3, giving a mixture of products in which, after dephosphorylation, allulose and fructose were detected. A complete conversion of d-ribulose 5-phosphate and formaldehyde into d-fructose 6-phosphate was demonstrated in the presence of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase (prepared from methane-grown M. capsulatus). d-Allulose 6-phosphate was prepared from d-allose by way of d-allose 6-phosphate. No evidence was found for its metabolism by extracts of M. capsulatus, thus eliminating it as an intermediate in the carbon assimilation process of this organism. A survey was made of the enzymes involved in the regeneration of pentose phosphate during C(1) assimilation via a modified pentose phosphate cycle. On the basis of the presence of the necessary enzymes, two alternative routes for cleavage of fructose 6-phosphate are suggested, one route involves fructose diphosphate aldolase and the other 6-phospho-2-keto-3-deoxygluconate aldolase. A detailed formulation of the complete ribulose monophosphate cycle of formaldehyde fixation is presented. The energy requirements for carbon assimilation by this cycle are compared with those for the serine pathway and the ribulose diphosphate cycle of carbon dioxide fixation. A cyclic scheme for oxidation of formaldehyde via 6-phosphogluconate is suggested.  相似文献   

12.
Among methylamine and/or ethylamine minus mutants of Arthrobacter P1 four different classes were identified, which were blocked either in the methylamine transport system, amine oxidase, hexulose phosphate synthase or acetaldehyde dehydrogenase. The results indicated that a common primary amine oxidase is involved in the metabolism of methylamine and ethylamine. Growth on ethylamine, however, was not dependent on the presence of the methylamine transport system. In mutants lacking amine oxidase, methylamine was unable to induce the synthesis of hexulose phosphate synthase, thus confirming the view that the actual inducer for the latter enzyme is not methylamine, but its oxidation product formaldehyde. Contrary to expectation, when the formaldehyde fixing enzyme hexulose phosphate synthase was deleted (mutant Art 11), accumulation of formaldehyde during growth on choline or on glucose plus methylamine as a nitrogen source did not occur. Evidence was obtained to indicate that under these conditions formaldehyde may be oxidized to carbon dioxide via formate, a sequence in which peroxidative reactions mediated by catalase are involved. In addition, a specific NAD-dependent formaldehyde dehydrogenase was detected in choline-grown cells of wild type Arthrobacter P1 and strain Art 11. This enzyme, however, does not play a role in methylamine or formaldehyde metabolism, apparently because these compounds do not induce its synthesis.Abbreviations RuMP ribulose monophosphate - HPS hexulose phosphate synthase - HPI hexulose phosphate isomerase  相似文献   

13.
16S ribosomal RNAs (rRNA) of 12 methylotrophic bacteria have been almost completely sequenced to establish their phylogenetic relationships. Methylotrophs that are physiologically related are phylogenetically diverse and are scattered among the purple eubacteria (class Proteobacteria). Group I methylotrophs can be classified in the beta- and the gamma-subdivisions and group II methylotrophs in the alpha-subdivision of the purple eubacteria, respectively. Pink-pigmented facultative and non-pigmented obligate group II methylotrophs form two distinctly separate branches within the alpha-subdivision. The secondary structures of the 16S rRNA sequences of 'Methylocystis parvus' strain OBBP, 'Methylosinus trichosporium' strain OB3b, 'Methylosporovibrio methanica' strain 81Z and Hyphomicrobium sp. strain DM2 are similar, and these non-pigmented obligate group II methylotrophs form one tight cluster in the alpha-subdivision. The pink-pigmented facultative methylotrophs, Methylobacterium extorquens strain AM1, Methylobacterium sp. strain DM4 and Methylobacterium organophilum strain XX form another cluster within the alpha-subdivision. Although similar in phenotypic characteristics, Methylobacterium organophilum strain XX and Methylobacterium extorquens strain AM1 are clearly distinguishable by their 16S rRNA sequences. The group I methylotrophs, Methylophilus methylotrophus strain AS1 and methylotrophic species DM11, which do not utilize methane, are similar in 16S rRNA sequence to bacteria in the beta-subdivision. The methane-utilizing, obligate group I methanotrophs, Methylococcus capsulatus strain BATH and Methylomonas methanica, are placed in the gamma-subdivision. The results demonstrate that it is possible to distinguish and classify the methylotrophic bacteria using 16S rRNA sequence analysis.  相似文献   

14.
Two methylotrophic bacterial strains, TR3 and PSCH4, capable of growth on methanesulfonic acid as the sole carbon source were isolated from the marine environment. Methanesulfonic acid metabolism in these strains was initiated by an inducible NADH-dependent monooxygenase, which cleaved methanesulfonic acid into formaldehyde and sulfite. The presence of hydroxypyruvate reductase and the absence of ribulose monophosphate-dependent hexulose monophosphate synthase indicated the presence of the serine pathway for formaldehyde assimilation. Cell suspensions of bacteria grown on methanesulfonic acid completely oxidized methanesulfonic acid to carbon dioxide and sulfite with a methanesulfonic acid/oxygen stoichiometry of 1.0:2.0. Oxygen electrode-substrate studies indicated the dissimilation of formaldehyde to formate and carbon dioxide for energy generation. Carbon dioxide was not fixed by ribulose bisphosphate carboxylase. It was shown that methanol is not an intermediate in methanesulfonic acid metabolism, although these strains grew on methanol and other one-carbon compounds, as well as a variety of heterotrophic carbon sources. These two novel marine facultative methylotrophs have the ability to mineralize methanesulfonic acid and may play a role in the cycling of global organic sulfur.  相似文献   

15.
1. A study was made of the incorporation of carbon from [(14)C]methanol by cultures of Methylococcus capsulatus and Methanomonas methanooxidans growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled substrate for periods of up to 3min, was analysed by chromatography and radioautography. 3. Over 80% of the radioactivity fixed by Methylococcus capsulatus at 30 degrees C at the earliest times of sampling appeared in phosphorylated compounds, of which glucose phosphate constituted 60%. 4. Most of the radioactivity fixed by Methanomonas methanooxidans at 30 degrees C at the earliest times of sampling appeared in serine, malate, aspartate and an unknown compound(s) tentatively suggested to be folate derivative(s). At 16 degrees C, [(14)C]methanol was fixed predominantly into serine and the unknown compound(s). 5. Extracts of Methylococcus capsulatus contain an enzyme system that catalyses the condensation of formaldehyde and ribose 5-phosphate to give a mixture consisting mainly of fructose phosphate and allulose phosphate. No similar activity was detected in extracts of Methanomonas methanooxidans. A convenient method was developed for assay of this enzyme system. 6. The enzyme system catalysing the condensation of formaldehyde with ribose 5-phosphate is particle-bound in both Methylococcus capsulatus and Pseudomonas methanica and is unstable in the absence of Mg(2+). 7. Extracts of Methanomonas methanooxidans contain high activities of d-glycerate-NAD oxidoreductase, whereas extracts of Methylococcus capsulatus and Pseudomonas methanica contain negligible activities of this enzyme. 8. These results indicate that during growth of Methylococcus capsulatus on methane, as with Pseudomonas methanica, cell constituents are made by the ribose phosphate cycle of formaldehyde fixation. This contrasts with Methanomonas methanooxidans, whose assimilation pathway resembles in some features that of Pseudomonas AM1 growing on methanol.  相似文献   

16.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

17.
Rat liver cytosolic enzyme preparation catalyses the formation of sedoheptulose 1,7-P2 (60% of total heptulose-P formed) from hexose 6-P and triose 3-P (reverse mode of pentose pathway operation). Smaller amounts of sedoheptulose 1,7-P2 are also formed from ribose 5-P during the non-oxidative synthesis of hexose 6-P (forward pentose pathway operation). The apparent absence of erythrose 4-P in biological systems may be explained by its contribution to carbons 4,5,6 and 7 of sedoheptulose 1,7-P2 as well as its pronounced ability to exist in dimeric form. Apart from the aldolase catalyzed formation of sedoheptulose 1,7-P2, 6-phosphofructokinase also catalyses its formation from sedoheptulose 7-P and fructose 1,6-bisphosphatase catalyses its dephosphorylation. These three enzymes may contribute to the regulation of carbon flux through the near equilibrium reactions of the non-oxidative pentose phosphate pathway in vivo. The phosphotransferase enzyme of the L-type pentose pathway is also able to catalyse the interconversion of sedoheptulose mono and bisphosphates via D-glycero D-ido octulose-P.  相似文献   

18.
The crystal structure of the YckF protein from Bacillus subtilis was determined with MAD phasing and refined at 1.95A resolution. YckF forms a tight tetramer both in crystals and in solution. Conservation of such oligomerization in other phosphate sugar isomerases indicates that the crystallographically observed tetramer is physiologically relevant. The structure of YckF was compared to with its ortholog from Methanococcus jannaschii, MJ1247. Both of these proteins have phosphate hexulose isomerase activity, although neither of the organisms can utilize methane or methanol as source of energy and/or carbon. Extensive sequence and structural similarities with MJ1247 and with the isomerase domain of glucosamine-6-phosphate synthase from Escherichia coli allowed us to group residues contributing to substrate binding or catalysis. Few notable differences among these structures suggest possible cooperativity of the four active sites of the tetramer. Phylogenetic relationships between obligatory and facultative methylotrophs along with B. subtilis and E. coli provide clues about the possible evolution of genes as they loose their physiological importance.  相似文献   

19.
The ribulose monophosphate (RuMP) pathway is one of the metabolic pathways for the synthesis of compounds containing carbon-carbon bonds from one-carbon units and is found in many methane- and methanol-utilizing bacteria, which are known as methylotrophs. The characteristic enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI), neither of which was thought to exist outside methylotrophs. However, the presumed yckG gene product (YckG) of Bacillus subtilis shows a primary structure similar to that of methylotroph HPS (F. Kunst et al., Nature 390:249-256, 1997). We have also investigated the sequence similarity between the yckF gene product (YckF) and methylotroph PHI (Y. Sakai, R. Mitsui, Y. Katayama, H. Yanase, and N. Kato, FEMS Microbiol. Lett. 176:125-130, 1999) and found that the yckG and yckF genes of B. subtilis express enzymatic activities of HPS and PHI, respectively. Both of these activities were concomitantly induced in B. subtilis by formaldehyde, with induction showing dependence on the yckH gene, but were not induced by methanol, formate, or methylamine. Disruption of either gene caused moderate sensitivity to formaldehyde, suggesting that these enzymes may act as a detoxification system for formaldehyde in B. subtilis. In conclusion, we found an active yckG (for HPS)-yckF (for PHI) gene structure (now named hxlA-hxlB) in a nonmethylotroph, B. subtilis, which inherently preserves the RuMP pathway.  相似文献   

20.
The amino acid L-lysine was produced from homoserine auxotrophic and S-(2-aminoethyl)-L-cysteine-resistant mutants of a newly isolated gram-positive methylotrophic bacterium, capable of growth on methanol at 60 degrees C. The temperature optimum for growth was between 50 and 53 degrees C. These aerobic, gram-positive, endospore-forming, rod-shaped bacteria required biotin and vitamin B12 for growth. Extracts of the bacteria grown on methanol lacked hydroxypyruvate reductase and contained hexulose 6-phosphate synthase activity. Therefore, these bacteria were considered to be type I methylotrophic bacteria of the genus Bacillus. Fed-batch fermentations resulted in cell densities of 50 g of cell dry weight per liter. Biomass yields on carbon, nitrogen, phosphate, and sulfate were determined. Generation of homoserine auxotrophic and amino acid analog-resistant mutants resulted in L-lysine concentrations of nearly 20 g/liter in fed-batch fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号